首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-Bromotrifluorovinyloxybenzene (4-Br-TFVE) undergoes cyclodimerization upon heating at 150 °C affording cis and trans isomers of 1,2-bis(4-bromophenoxy)hexafluorocylcobutane. Stereoisomers were separated by selective crystallization, confirmed by single crystal X-ray, and further characterized by NMR. Remarkable difference in the solid state structures include aryl to aryl dihedral angles of 12° for the trans isomer and 88° for the cis isomer. Polymers containing roughly equal amounts of cis and trans fused perfluorocyclobutyl (PFCB) rings should be expected to have low crystallinity due to the marked difference in the two unit cells as is observed.  相似文献   

2.
We have observed reversible transcis photo-isomerization behaviors of 4-dimethylaminoazobenzene carboxylic acid (4DAzC) in ethyl acetate by alternating irradiations at 370 and 430 nm. The photo-isomerization from trans- to cis-isomer was found to be strongly solvent dependent and not to occur efficiently in water and ethanol. Also photo-isomerization from cis- to trans-isomer was occurred upon 370 nm illumination or via thermal relaxation. The activation energy for the thermal isomerization from cis to trans-isomer was estimated to be 49.2 kJ/mol in ethyl acetate from the temperature-dependent kinetic absorption measurements.  相似文献   

3.
Alkyl and dialkylammonium tetrafluoroborate promoted cis-trans isomerization of 1,3,5-trimethyl-1,3,5-triphenylcyclotrisiloxane (1) in DMSO-d6 were studied. The isomerization equilibrium constant K are within the range of 3.74-3.30 from 22 to 47 °C. Thermodynamic parameters of ΔH° and ΔS° for the isomerization were −0.95 kcal/mol and −0.59 cal/mol-K respectively. The isomerization rate is first order in [cis-1] and second order in [RnNH4−nBF4]. Both components of RnNH4−n+ and BF4 are essential for the catalytic cis-trans isomerization. The catalytic strength follows the decreasing order of +H3N(CH2)6NH3+>n-C8H17NH3+>n-C16H33NH3+>Me3CNH3+>PhCH2NH3+>Et2NH2+?Ph2CHNH3+, Et3NH+. Inversion region was observed in the plot of ln(kf/T) versus (1/T) with the ceiling located at around 38 °C. The positive activation enthalpy of 9 kcal/mol was estimated at 22-32 °C. The activation enthalpy turns to be slightly negative at T>38 °C.  相似文献   

4.
[Cu(SRaaiNR′)(PPh3)X] complexes are synthesized by the reaction of CuX (X = Cl, Br, I), triphenylphosphine and 1-alkyl-2-[(o-thioalkyl)phenylazo]imidazole (SRaaiNR′). The single crystal X-ray structure of [Cu(SEtaaiNH)(PPh3)I] (SEtaaiNH = 2-[(o-thioethyl)phenylazo]imidazole) shows a distorted tetrahedral geometry of the copper center with bidentate, N(azo), N(imidazole) chelation of SEtaaiNH and coordination from PPh3 and iodine. These complexes show a trans-to-cis isomerization upon irradiation with UV light. The reverse transformation, cis-to-trans isomerization, is very slow with visible light irradiation and is thermally accessible. The quantum yields (?t→c) of the trans-to-cis isomerization of [Cu(SRaaiNR′)(PPh3)X] are lower than the free ligand values. This is due to the increased mass and rotor volume of the complexes compared to the free ligand data. The rate of isomerization follows the order: [Cu(SRaaiNR′)(PPh3)Cl] < [Cu(SRaaiNR′)(PPh3)Br] < [Cu(SRaaiNR′)(PPh3)I]. The activation energy (Ea) of the cis-to-trans isomerization is calculated by a controlled temperature reaction. DFT computation of representative complexes has been used to determine the composition and energy of the molecular levels.  相似文献   

5.
By high-precision dynamic calorimetry the temperature dependences of heat capacity of dimethylene urethane (DMU) between 320 and 370 K and partially crystalline poly(dimethylene urethane) (PDMU) in the range 326-490 K at standard pressure have been determined within ±1.5%. The thermodynamic characteristics of fusion of the substances, namely the temperature interval of melting, temperature, enthalpy and entropy of fusion, as well as the characteristics of devitrification and glassy state for poly(dimethylene urethane) have been estimated. The first and the second cryoscopic constants have been calculated for dimethylene urethane. The experimental data obtained in the present work and literature findings on the heat capacity of the substances were used to calculate their thermodynamic functions: the heat capacity C°p (T), enthalpy H°(T)−H°(0), entropy S°(T) and Gibbs function G°(T)−H°(0) over the range from T→0 to (370-480) K. Based on the data, the thermodynamic characteristics of polymerization process with five-membered ring opening ΔpolH°, ΔpolS° and ΔpolG° of dimethylene urethane with the formation of linear partially crystalline poly(dimethylene urethane) have been evaluated.  相似文献   

6.
The isolation of the retinal isomers from all-trans-retinal was performed by flash countercurrent chromatography. In each separation, isomerization reaction solution of 200 mg all-trans-retinal could be loaded on a 1200 mL of high-speed countercurrent chromatographic column with 5 mm bore, eluted by a mobile phase flow rate of 25 mL/min, resulting in 63 mg of 11-cis-retinal, 24 mg of 13-cis-retinal and 26 mg of 9-cis-retinal with purities more than 95%. n-Hexane–acetonitrile (3:1) was used as the solvent system which possesses the advantages of simplicity, re-use of the solvent and multiple injections. This method could be used to prepare 13-cis-retinal, 11-cis-retinal and 9-cis-retinal for the photoisomerization investigation, such as the effect of 11-cis-retinal in the visual system.  相似文献   

7.
cis-Chrysanthemic acid has been prepared in a few steps from dimethyldimedone via dibromination at alpha positions of each carbonyl carbons. The trans-dibromide which is almost exclusively formed has been isomerized to its cis-stereoisomer by highly chemoselective tandem H/K-K/H exchanges involving potassium bases at low temperature (<−40 °C). Carbocyclization of the potassium enolate intermediate takes place at around −30 °C and provide the bicyclo[3.1.0]-hexane skeleton. Lithiated bases behave differently and mainly lead to Br/M rather than to H/M exchange. We have been unsuccessful in using state of the art enantioselective metallation reactions to achieve the enantioselective synthesis of (1R)-cis-chrysanthemic acid using the disclosed strategy. This therefore still remains challenge.  相似文献   

8.
The heat capacity investigation of crystalline pentasodium zirconium tris(phosphate) was carried out in a vacuum adiabatic calorimeter between 7 and 340 K and in a differential scanning calorimeter of the heat bridge type between 330 and 620 K. Between 389 and 424 K, an isostructural solid-to-solid phase transition of Na5Zr(PO4)3, has been found, the nature of which is connected with a centering of off-centered zirconium atoms in octahedral sites and an occupation transfer between sodium sites in the structure. The results were used to calculate the characteristics of the phase transition and the thermodynamic functions of Na5Zr(PO4)3: the transition temperature T°trs, enthalpy of transition ΔtrsH°, entropy of transition ΔtrsS°; enthalpy H°(T)−H°(0), entropy S°(T) and Gibbs function G°(T)−H°(0) over the range from 0 to 620 K. From hydrofluoric acid solution microcalorimetry, the enthalpy of solution of Na5Zr(PO4)3 at 298.15 K has been determined and the standard enthalpy of formation has been derived. By combining the data obtained by the two techniques, the Gibbs function of formation of Na5Zr(PO4)3 at 298.15 K has been calculated.  相似文献   

9.
By dynamic calorimetry the temperature dependence of heat capacity for two-dimensional (2D) polymerized tetragonal phase of C60 has been determined over the 300-650 K range at standard pressure mainly with an uncertainty ±1.5%. In the range 490-550 K, an irreversible endothermic transition of the phase, caused by the depolymerization of the polymer, has been found and characterized. Based on the experimental data obtained and literature information, the thermodynamic functions of 2D polymerized tetragonal phase of C60, namely, the heat capacity C°p(T), enthalpy H°(T)−H°(0), entropy S°(T), and Gibbs function G°(T)−H°(0), have been calculated over the range from T→0 to 490 K. From 150 to 330 K in an adiabatic vacuum calorimeter and between 330 and 650 K in a dynamic calorimeter the thermodynamic properties of the depolymerization products have been examined and compared with the corresponding data for the monomeric phase C60.  相似文献   

10.
The adsorption of glycomacropeptide (GMP) from cheese whey on an anion-exchange adsorbent was investigated using isothermal titration microcalorimetry to measure thermodynamic information regarding such processes. Isotherms data were measured at temperatures of 25 and 45 °C, pH 8.2 and various ionic strengths (0–0.08 mol L−1 NaCl). The equilibrium data were fit using the Langmuir model and the process was observed to be reversible. Temperature was observed to positively affect the interaction of the protein and adsorbent. Microcalorimetric studies indicated endothermic adsorption enthalpy in all cases, except at 45 °C and 0.0 mol L−1 NaCl. The adsorption process was observed to be entropically driven at all conditions studied. It was concluded that the increase in entropy, attributed to the release of hydration waters as well as bounded ions from the adsorbent and protein surface due to interactions of the protein and adsorbent, was a major driving force for the adsorption of GMP on the anion-exchange adsorbent. These results could allow for design of more effective ion-exchange separation processes for proteins.  相似文献   

11.
The [ReOX2(hbt)(EPh3)] (X = Cl, Br; E = As, P) chelates have been prepared in the reactions of [ReOX3(EPh3)2] complexes (X = Cl, Br; E = P, As) with 2-(2′-hydroxyphenyl)-2-benzothiazole (hbtH) in acetone. From the reactions of [ReOX3(PPh3)2] with hbtH two kind of crystals [ReOX2(hbt)(PPh3)] · MeCN and [ReOX2(hbt)(PPh3)] with different arrangement of halide ions (cis and trans) were isolated, whereas the [ReOX3(AsPh3)2] oxocompounds react with hbtH to give only cis-halide isomers. The complexes were structurally and spectroscopically characterised. The electronic structures of both [ReOBr2(hbt)(PPh3)] isomers have been calculated with the density functional theory (DFT) method. The TDDFT/PCM calculations have been employed to produce a hundred of singlet excited-states starting from the ground-state geometry optimized in the gas phase of cis- and trans-halide isomers of [ReOBr2(hbt)(PPh3)] and the UV–Vis spectra of these complexes have been discussed on this basis.  相似文献   

12.
A deamination process was observed after copper(II) complexation reaction with guanidinoacetic (Gaa) and glutamic acids (Glu), forming the binuclear copper(II) complex K2Cu2C16H23N7O12 · 1/2H2O (1), which was characterized by elemental analysis (CHN), spectroscopy methods (IR and EPR), powder X-ray diffraction, thermogravimetric analysis (TGA), and mass spectrometry. A new ligand, namely biguanide-1,5-diethanoate (Bge) (C6H9N5O4), was formed during complexation, probably due to the reaction between two Gaa species and the consequent release of a significant amount of ammonia, thus, characterizing the deamination process. In complex 1, Bge behaved as a tetradentated ligand, using its oxygen and nitrogen atoms as coordinating sites to both Cu(II) ions. In addition, Glu has coordinated to Cu(II) through its α-N and O atoms. Theoretical calculations of the ciscis, cistrans, and transtrans isomers of 1, considering three prototropic forms of the Bge ligand, were carried out using semi-empirical quantum mechanics (PM3/d). DFT (B3LYP and B3P86) calculations of complex 1, in which a hydrogen atom replaced the side chain of Glu, were also carried out using the 6-31G(d) basis set and the LanL2DZ effective core potential for the transition metal. Based on experimental and theoretical data, we concluded that the transtrans isomer of the binuclear copper(II) complex 1 should be the most stable, although the occurrence of other isomers, even if in minor quantities, should not be disregarded.  相似文献   

13.
Poly(vinyl octadecanoate)-grafted porous silica (Sil-VODn, n = 23) was newly prepared to investigate the efficiencies of the carbonyl groups in the polymer chain for recognition of polycyclic aromatic hydrocarbons (PAHs) in RP-HPLC. In Sil-VOD23, the octadecyl side chains were connected to the polymer main chain through ester linkage in opposite direction to that in poly(octadecylacrylate)-grafted silica (Sil-ODAn, n = 25) which has been reported by us. Sil-ODAn performs enhanced molecular shape selectivity of PAHs in RP-HPLC through multiple carbonyl–π interaction of aligned carbonyl groups which are induced by the formation of highly oriented structure of side chains. Differential scanning calorimetry of VOD23 demonstrated that octadecyl alkyl chains showed crystalline to isotropic phase transition with endothermic peak at 48.7 °C which was similar to ODA25 (at 47.8 °C). After grafting of both polymers, phase transition phenomenon was completely disappeared in Sil-VOD23 whereas Sil-ODA25 still exhibits phase transition although at lower endothermic peak top temperature (38.5 °C). This indicates that the slight structural change in Sil-VODn and Sil-ODAn influence the ordered structure of side alkyl chains. Moreover, solid-state 13C NMR revealed that the long alkyl chain in Sil-VOD23 is highly disordered as compared with that of Sil-ODA25. Sil-VOD23 was applied to RP-HPLC stationary phase using PAHs as π-electron containing elutes, and compared with Sil-ODA25 and conventional monomeric octadecylated silica (ODS). Results confirmed that Sil-VOD23 showed much higher selectivity for PAH isomers than ODS, but lower than Sil-ODA25. For example, the separation factors for trans-/cis-stilbene were 1.47 (Sil-VOD23), 1.70 (Sil-ODA25) and 1.07 (ODS), respectively. These results indicate that carbonyl groups in Sil-VOD23 are effective for molecular shape recognition of PAHs through carbonyl–π interactions even in the disordered state.  相似文献   

14.
Two novel methodologies for quantification of C13 norisoprenoids in wines were developed. The first methodology, method A (reference method) was based on the headspace solid-phase microextraction combined with gas chromatography–quadrupole mass spectrometry operating in selected ion monitoring mode (HS-SPME–GC–qMS–SIM). This methodology allowed to select the GC conditions for an adequate chromatographic resolution of wine components. The second methodology, method B (rapid method) was based on the HS-SPME–GC–qMS–SIM, using GC conditions that allowed to obtain a C13 norisoprenoid volatile signature. In the later, the GC capillary column of 30 m at 220 °C was used acting as a transfer line of the components sorbed by the SPME coating fibre to the mass spectrometer, which acts as a sensor for m/z fragments 142 and 192. It does not require any pre-treatment of the sample, and the C13 norisoprenoid composition of the wine was evaluated based on the chromatographic profile and specific m/z fragments, without complete chromatographic separation of its components. For quantification purposes, external calibration curves were constructed with β-ionone chemical standard. Calibration curves with regression coefficient (r2) of 0.9940 and 0.9968, RSD of 1.08% and 12.51%, and detection limits of 1.10 and 1.57 μg L−1 were obtained for methods A and B, respectively. These methodologies were applied to seventeen white and red table wines. Two vitispirane isomers (158–1529 μg L−1) and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) (6.42–39.45 μg L−1) were quantified. The data obtained for vitispirane isomers and TDN using the two methods were highly correlated (r2 of 0.9756 and 0.9630, respectively). Associated to the fast and robust character of the proposed rapid method B and considering the extraction time, it is important to focus its selectivity and potential applicability if specific m/z fragments would be established for new analytes.  相似文献   

15.
Reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of eleven unnatural β2-amino acids on a new chiral stationary phase, using the 11-methylene-unit spacer of aminoundecylsilica gel for the bonding of (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid as selector. The nature and concentration of the acidic and organic modifiers, the pH, the mobile phase composition, and the structures of the analytes substantially influenced the retention and resolution. Separations were carried out at constant mobile phase compositions in the temperature range 7–40 °C and the changes in enthalpy, Δ(ΔH°), entropy, Δ(ΔS°), and free energy, Δ(ΔG°) were calculated. The elution sequence was determined in some cases: the S enantiomers eluted before the R enantiomers.  相似文献   

16.
Solid state thermal isomerization of [Co(NH3)5(ONO)]Cl2 (nitrito isomer) to [Co(NH3)5(NO2)]Cl2 (nitro isomer) and reverse reaction were investigated by non-isothermal differential scanning calorimetry (DSC) and found to be essentially an equilibrium process. The interconversions are accelerated at above 65 °C and reach to equilibrium state at about 155 °C. After establishment of the equilibrium the relative amounts of two isomers at any temperature are governed by Gibbs free energy relationship. The experimental enthalpy changes of isomerization of pure nitrito and nitro solid samples to the equilibrium state are −4.67 (±0.19) and 0.99 (±0.05) kJ mol−1, respectively. From these values, total enthalpy change was calculated as: ΔH°=−5.66(±0.20) kJ mol−1. Using Gibbs free energy relationship, equilibrium constant, total free energy and entropy changes were estimated at 60 °C as: K=7.72(±0.8),  kJ mol−1 and  J K−1 mol−1.An initial rate method has been developed to determine the kinetic parameters of these reactions from non-isothermal DSC data. Both nitro to nitrito and reverse reactions obey first order kinetic law in solid state. Estimated activation parameters of forward and reverse paths at 60 °C are , , and , respectively. The negative activation entropy of both directions support the intramolecular mechanism of isomerization, including formation of a seven coordinate transition state, which formerly suggested based on spectral and X-ray methods.  相似文献   

17.
Two new geometrical isomers of [Cr(py)2(chrySQ)(chryCat)] (chrySQ = chrysenesemiquinonate; chryCat = chrysenecatecholate; py = pyridine) were synthesized by two different synthetic procedures. In the first, an acetonitrile solution containing a stoichiometric mixture of Cr(CO)6, chrysenequinone and pyridine was photolyzed with a Hg-lamp. The second procedure was based on substituting one of the chrysenesemiquinonate ligand in the tris-[Cr(chrySQ)3] complex with two pyridine ligands. In both procedures two isomeric forms of [Cr(py)(chrySQ)(chryCat)] were isolated with the trans-isomer obtained in higher yield. The structures of the two isomers have been modeled using parameterized PM3 semiempirical method. Theoretical harmonic vibrational frequencies of the cis- and trans-isomers have been computed and compared with the experimental vibrational frequencies. Variable-temperature magnetic susceptibility has been studied for the two isomers in the 10–300 K temperature range. Theoretical modeling of the magnetic data indicated strong antiferromagnetic exchange interaction between CrIII (S = 3/2) and chrySQ (S = 1/2) with J = −365 ± 6 and −395 ± 4 cm−1 for the cis- and trans-isomers, respectively. The electrochemical behavior of cis- and trans-[Cr(py)2(chrySQ)(chryCat)] complexes were studied by cyclic voltammetry in acetonitrile solvent. Both complexes showed two one-electron redox processes attributable to reversible reduction and oxidation of the chrySQ and chryCat ligands. Reduction of the Cr(III) to Cr(II) was observed for both complexes near−1300 mV. The electronic spectra of the two isomers were dominated by charge-transfer (LMCT, MLCT and ILCT) transitions. In addition, a low-energy intervalence charge-transfer (IVCT) transition was observed for the cis-isomer at 1085 nm. Theoretical studies of the electronic spectra by ZINDO/S-CI method were useful in interpreting the observed electronic transitions.  相似文献   

18.
A method for the determination of fatty acids in serum based on GC–MS (micro-SIS detection mode) has been developed and the separation and cis/trans isomers have been identified. A prior two-step extraction/derivatization procedure accelerated by ultrasound allows individual determination of esterified (EFAs) and non-esterified fatty acids (NEFAs), and shortening of the derivatization steps to 5 min for EFAs and 15 min for NEFAs. The total analysis time for 39 fatty acids was 61 min. The minimum LOD and LOQ values were 0.002 and 0.006 μg/ml, respectively. The proposed method was validated for EFAs and NEFAs using two different methods and the results show no statistical differences between the proposed method and those used as reference. The proposed derivatization–extraction methodology is suitable for fatty-acid analysis of human serum, and can be applied to nutritional and epidemiological studies.  相似文献   

19.
The present study describes a new environmentally friendly sample pretreatment system based on solid-phase microextraction (SPME) for the sensitive determination of polyphenols. A derivatization process was necessary to convert the polar non-volatile compounds into volatile derivatives. Direct immersion (DI) SPME was used for the adsorption of polyphenols, and then the fiber was placed in the headspace of the derivatizing reagent, bis(trimethylsilyl)trifluoroacetamide (BSTFA). The separation was carried out by coupling gas chromatography with mass spectrometry in the selected ion monitoring mode, after silylation. Optimal extraction conditions were 25 °C for 10 min under continuous stirring using DI and a polyacrylate fiber. After extraction, the fiber was inserted into the headspace of BSTFA (10 μL) and the polyphenols were derivatized for 15 min at 50 °C. Desorption was carried out at 280 °C for 5 min. The method allowed the determination of both isomers cis- and trans-resveratrol, piceatannol, catechin and epicatechin in wine and grapes, and it was validated for linearity, detection and quantitation limits, selectivity, accuracy and precision. Detection limits ranged from 0.05 to 0.9 ng mL−1 at a signal-to-noise ratio of 3, depending on the compound. Recoveries obtained for spiked samples were satisfactory for all compounds.  相似文献   

20.
A series of heteroaryl substituted bithiophene azo dyes in solution were irradiated with visible light to promote the azo E-Z isomerization and then the kinetics of the thermal Z-E back reaction was studied. The speed of this process is strongly influenced by the nature of the aromatic ring linked to the NN function. While thiazole bithiophene azo dyes exhibit high switching speeds between the two isomers, but limited interconversion, for benzothiazole and substituted thiadiazole bithiophene azo dyes the switching between the two photoisomers can be performed in 3 s with a significant conversion of the trans-isomer to the thermal unstable cis-isomer (19-21%) and therefore a notable variation of the visible spectrum is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号