首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An on-line method, based on coupling dynamic ultrasonic extraction (DUE), continuously sampling the suspension of sample and solvent, high performance liquid chromatographic separation with diode array detection, has been developed for the determination of the flavonoids, including baicalin, baicalein and wogonin, from the root of Scutellaria baicalensis Georgi. Variables influencing the DUE were evaluated by orthogonal test. The extraction yields of baicalin, baicalein and wogonin in the roots of S. baicalensis Georgi obtained from five different cultivated areas are 73.8–131.5 μg mg−1 (RSD ≤ 6.24%), 6.8–15.9 μg mg−1 (RSD ≤ 5.36%) and 4.4–14.3 μg mg−1 (RSD ≤ 5.30%), respectively. The limits of detection for baicalin, baicalein and wogonin are 0.30, 0.37 and 0.41 μg mL−1, respectively. Linearity is from 0.55 to 109 μg mL−1 for baicalin, from 0.51 to 105 μg mL−1 for baicalein and from 0.53 to 102 μg mL−1 for wogonin. Compared with off-line continuous flow-DUE, the proposed method would be more convenient for the determination of the analytes and the rapid optimization of the extraction process. The extraction yields of flavonoids obtained by the proposed method are comparable with those obtained by dynamic microwave assisted extraction, static ultrasonic extraction and reflux extraction. The result indicated that the proposed method is suitable to determine the active components in Chinese herbal medicine.  相似文献   

2.
A highly sensitive NOx sensor was designed and developed by electrochemical incorporation of copper nanoparticles (CuNP) on single-walled carbon nanotubes (SWCNT)-polypyrrole (PPy) nanocomposite modified Pt electrode. The modified electrodes were characterized by scanning electron microscopy and energy dispersive X-ray analysis. Further, the electrochemical behavior of the CuNP-SWCNT-PPy-Pt electrode was investigated by cyclic voltammetry. It exhibited the characteristic CuNP reversible redox peaks at −0.15 V and −0.3 V vs. Ag/AgCl respectively. The electrocatalytic activity of the CuNP-SWCNT-PPy-Pt electrode towards NOx is four-fold than the CuNP-PPy-Pt electrode. These results clearly revealed that the SWCNT-PPy nanocomposite facilitated the electron transfer from CuNP to Pt electrode and provided an electrochemical approach for the determination of NOx. A linear dependence (r2 = 0.9946) on the NOx concentrations ranging from 0.7 to 2000 μM, with a sensitivity of 0.22 ± 0.002 μA μM−1 cm−2 and detection limit of 0.7 μM was observed for the CuNP-SWCNT-PPy-Pt electrode. In addition, the sensor exhibited good reproducibility and retained stability over a period of one month.  相似文献   

3.
A new fiber for solid-phase microextraction (SPME) was prepared employing cork as a coating. The morphology and composition of the cork fiber was evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The proposed fiber was used for the determination of polycyclic aromatic hydrocarbons (PAHs) in river water samples by gas chromatography–selected ion monitoring–mass spectrometry (GC–SIM–MS). A central composite design was used for optimization of the variables involved in the extraction of PAHs from water samples. The optimal extraction conditions were extraction time and temperature of 60 min and 80 °C, respectively. The detection and quantification limits were 0.03 and 0.1 μg L−1, respectively. The recovery values were between 70.2 and 103.2% and the RSD was ≤15.7 (n = 3). The linear range was 0.1–10 μg L−1 with r ≥ 0.96 and the fiber-to-fiber reproducibility showed RSD ≤ 18.6% (n = 5). The efficiency of the cork fiber was compared with commercially available fibers and good results were achieved, demonstrating the applicability and great potential of cork as a coating for SPME.  相似文献   

4.
For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship in respect to the logarithm of the complementary oligonucleotides sequence concentrations in the wide range of 1.0 × 10−15 − 1.0 × 10−7 M, with a detection limit of 1.0 × 10−17 M (S/N = 3). The prepared sensor also showed good stability (14 days), reproducibility (RSD = 2.1%) and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining gold nanoparticles with the on-site fabricated aligned MWCNT array represents a promising platform for achieving sensitive biosensor for fast mutation screening related to most human cancer types.  相似文献   

5.
Recent progress in flexible and lightweight electrochemical sensor systems requires the development of paper-like electrode materials. Here, we report a facile and green synthesis of a new type of MnO2 nanowires–graphene nanohybrid paper by one-step electrochemical method. This strategy demonstrates a collection of unique features including the effective electrochemical reduction of graphene oxide (GO) paper and the high loading of MnO2 nanowires on electrochemical reduced GO (ERGO) paper. When used as flexible electrode for nonenzymatic detection of hydrogen peroxide (H2O2), MnO2–ERGO paper exhibits high electrocatalytic activity toward the redox of H2O2 as well as excellent stability, selectivity and reproducibility. The amperometric responses are linearly proportional to H2O2 concentration in the range 0.1–45.4 mM, with a detection limit of 10 μM (S/N = 3) and detection sensitivity of 59.0 μA cm−2 mM−1. These outstanding sensing performances enable the practical application of MnO2–ERGO paper electrode for the real-time tracking H2O2 secretion by live cells macrophages. Therefore, the proposed graphene-based nanohybrid paper electrode with intrinsic flexibility, tailorable shapes and adjustable properties can contribute to the full realization of high-performance flexible electrode material used in point-of-care testing devices and portable instruments for in-vivo clinical diagnostics and on-site environmental monitoring.  相似文献   

6.
Some nanostructures are reported to possess enzyme-mimetic activities similar to those of natural enzymes. Herein, highly-dispersed Pt nanodots on Au nanorods (HD- PtNDs@AuNRs) with mimetic peroxidase activity were designed as an active electrode modifier for fabrication of a hydrogen peroxide (H2O2) electrochemical sensor. The HD-PtNDs@AuNRs were synthesized by a seed-mediated growth approach and confirmed by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and UV–vis spectroscopy. The electrochemical and catalytical performances of HD-PtNDs@AuNRs towards H2O2 reduction were investigated in detail by cyclic voltammetry and amperometry. The HD-PtNDs@AuNRs modified electrode displayed a high catalytic activity to H2O2 at −0.10 V (versus SCE), a rapid response within 5 s, a wide linear range of 2.0–3800.0 μM, a detection limit of 1.2 μM (S/N = 3), and a high sensitivity of 181 μA mM−1 cm−2. These results suggested a promising potential of fabricating H2O2 electrochemical sensor using HD- PtNDs@AuNRs.  相似文献   

7.
Li Zaijun  Wang Zhongyun  Fang Yinjun 《Talanta》2010,80(5):1632-1027
The paper describes a sensitive and highly stable label-free electrochemical impedance immunosensor for the determination of aflatoxin B1 (AFB1), which is based on the formation of silica gel-ionic liquid biocompatible film on the glassy carbon electrode. The electrochemical performances of the sensor were investigated by electrochemical impedance spectroscopy using a Fe(CN)63−/4− phosphate buffer solution as base solution for test. As new ionic liquid, 1-amyl-2,3-dimethylimidazolium hexafluorophosphate, offers a very biocompatible microenvironment for AFB1 antibody, the sensor exhibits good repeatability (RSD = 1.2%), sensitive electrochemical impedance response to AFB1 in the range of 0.1-10 ng ml−1 and lowers the detection limit of AFB1 (0.01 ng ml−1). The electron-transfer resistance change of the sensor after and before incubation with AFB1 of 2.0 ng ml−1 can retain 95% over a 180-day storage period at 4 °C. The results present a remarkable improvement of sensitivity (2-fold) and long-term stability (190-fold) when compared to classical silica gel sensor. Moreover, proposed sensor has a high selectivity to AFB1 alone with no significant response to AFB2, AFG1, AFG2 and AFM1 as single substrates, it has been successfully applied to the determination of trace AFB1 in bee pollen samples with a spiked recovery in the range of 96.0-102.5%.  相似文献   

8.
A new tetranuclear copper(II) complex which mimics the active site of catechol oxidase was synthesized and characterized by IR, CHN, electronic spectroscopic and 1H NMR methods. The title complex [Cu2(μ-OH)(bpbpmp-NO2)]2[ClO4]2 was employed in the construction of a novel biomimetic sensor and used in the determination of chlorogenic acid by square wave voltammetry. The performance and optimization of the resulting biomimetic sensor were studied in detail. The best response of this sensor was obtained for 75:15:10% (w/w/w) ratio of the graphite powder:nujol:Cu(II) complex, 0.1 mol L−1 phosphate buffer solution (pH 7.0), with frequency, pulse amplitude, and scan increment at 30 Hz, 100 mV, and 3.0 mV, respectively. The chlorogenic acid concentration was linear in the range of 5.0 × 10−6 to 1.45 × 10−4 mol L−1 (r = 0.9985) with a detection limit of 8.0 × 10−7 mol L−1. This biomimetic sensor demonstrated long-term stability (250 days; 640 determinations) and reproducibility, with a relative standard deviation of 10.0%. The recovery study of chlorogenic acid in coffee samples gave values from 93.2% to 106.1% and the concentrations determined showed good agreement when compared with those obtained using capillary electrophoresis at the 95% confidence level.  相似文献   

9.
Ochratoxin A (OTA) exhibits potent nephrotoxic, carcinogenic and teratogenic effects and its maximum level in wines has been set to 2 μg L−1 by regulation. Consequently, the analytical procedures for OTA determination in wines have to be both very sensitive and reliable. In this paper, we compared two quantification methods: the stable isotope dilution assay (SIDA) and the diastereomeric dilution assay (DIDA). For this purpose, non-natural analogues of OTA were synthesized: the labeled OTA (OTA-d4) as a diastereomeric mixture for the SIDA and one non-natural OTA’s diastereomer (OTA-dia) for the DIDA. To quantify OTA in red grapes, musts or wines, the sample preparation was optimized using immunoaffinity column extraction and the analysis was performed by LC–MS/MS in Multiple Reaction Monitoring mode. A validation procedure in agreement with the International Organization of Vine and Wine recommendations was conducted. It appeared that SIDA quantification exhibited excellent sensitivity (LOD < 1 ng L−1), accuracy (recovery = 98%), repeatability (RSD < 3%) and intermediate reproducibility (RSD < 4%) compared to quantification by DIDA. Indeed, DIDA method did not provide satisfactory results demonstrating that immunoaffinity extraction is exclusively selective for the natural OTA and not for its diastereomer, which therefore cannot be considered as a good internal standard for this particular method.  相似文献   

10.
Alireza Mohadesi 《Talanta》2007,72(1):95-100
An electrochemical sensor for the detection of copper(II) ions is described using a meso-2,3-dimercaptosuccinic acid (DMSA) self-assembled gold electrode. First in ammonia buffer pH 8, copper(II) ions complex with self-assembled monolayer (SAM) via the free carboxyl groups on immobilized meso-2,3-dimercaptosuccinic acid (accumulation step). Then, the medium is exchanged to acetate buffer pH 4.6 and the complexed Cu(II) ions are reduced in negative potential of −0.3 V (reduction step). Following this, reduced coppers are oxidized and detected by differential pulse (DP) voltammetric scans from −0.3 to +0.7 V (stripping step). The effective parameters in sensor response were examined. The detection limit of copper(II) was 1.29 μg L−1 and R.S.D. for 200 μg L−1 was 1.06%. The calibration curve was linear for 3-225 μg L−1 copper(II). The procedure was applied for determination of Cu(II) to natural waters and human hairs. The accuracy and precision of results were comparable to those obtained by flame atomic absorption spectroscopy (FAAS).  相似文献   

11.
A nitrogen-doped graphene/carbon nanotubes (NGR–NCNTs) nanocomposite was employed into the study of the electrochemical sensor via electrodeposition for the first time. The morphology and structure of NGR–NCNTs nanocomposite were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Meanwhile, the electrochemical performance of the glassy carbon electrode (GCE) modified with electrodeposited NGR–NCNTs (ENGR–NCNTs/GCE) towards caffeine (CAF) and vanillin (VAN) determination was demonstrated by cyclic voltammetry (CV) and square wave voltammetry (SWV). Under optimal condition, ENGR–NCNTs/GCE exhibited a wide linearity of 0.06–50 μM for CAF and 0.01–10 μM for VAN with detection limits of 0.02 μM and 3.3 × 10−3 μM, respectively. Furthermore, the application of the proposed sensor in food products was proven to be practical and reliable. The desirable results show that the ENGR–NCNTs nanocomposite has promising potential in electrocatalytic biosensor application.  相似文献   

12.
A solid-phase microextraction (SPME) method for the determination of five amphetamine type stimulants (ATSs) in water and urine samples is presented. Analytes were simultaneously derivatized with iso-butyl chloroformate (iBCF) in the aqueous sample while being extracted, improving in this way the extractability of ATSs and permitting their determination by gas chromatography–mass spectrometry (GC–MS). The SPME procedure was carefully optimized in order to achieve adequate limits of detection (LODs) for environmental concentrations. Hence, different operational parameters were considered: type of SPME coating, ionic strength, basic catalyzer and derivatizing agent amount, extraction time and temperature. The final SPME procedure consists into the extraction of 100 mL of sample containing 2 g of dipotassium monohydrogen phosphate trihydrate and 100 μL of iBCF (1:1 in acetonitrile), for 40 min at 60 °C with a polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber. Under these conditions, LODs in wastewater ranged from 0.4 to 2 ng L−1, relative recoveries in the 84–114% range and relative standard deviations (RSD) lower than 15% were obtained. The application of the method to wastewater and river water samples showed the ecstasy ATS, 3,4-methylenedioxymethamphetamine (MDMA), as the most frequently detected, followed by methamphetamine, in concentrations around 20 ng L−1. Finally, the method was downscaled and also validated with urine samples, proving its good performance with this matrix too: RSD < 11%, recoveries in the 98–110% range and LODs lower than 0.1 μg L−1.  相似文献   

13.
In this paper, LaNi0.6Co0.4O3 (LNC) nanoparticles were synthesized by the sol–gel method, and the structure and morphology of LNC nanoparticles were characterized by X-ray diffraction spectrum, scanning electron microscopy and transmitting electron microscopy. And then, LNC was used to modify carbon paste electrode (CPE) without any adhesive to fabricate hydrogen peroxide and glucose sensor, and the results demonstrated that LNC exhibited strong electrocatalytical activity by cyclic voltammetry and amperometry. In H2O2 determination, linear response was obtained in the concentration range of 10 nM–100 μM with a detection limit of 1.0 nM. In glucose determination, there was the linear region of 0.05–200 μM with a detection limit of 8.0 nM. Compared with other reports, the proposed sensor also displayed high sensitivity toward H2O2 (1812.84 μA mM−1 cm−2) and glucose (643.0 μA mM−1 cm−2). Moreover, this prepared sensor was applied to detect glucose in blood serum and hydrogen peroxide in toothpaste samples with satisfied results, indicating its possibility in practical application.  相似文献   

14.
A novel ceria (CeO2)–ordered mesoporous carbon (OMC) modified electrode for the sensitive amperometric determination of hydrazine was reported. CeO2–OMC composites were synthesized via a hydrothermal method at a relatively low temperature (180 °C) and characterized by scanning electron microscopy (SEM), transmission electron microcopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The CeO2–OMC modified glassy carbon electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) and indicated good electrocatalytic effect to the oxidation of hydrazine. Under the optimized conditions, the present sensor could be used to measure hydrazine in wide linear range from 40 nM to 192 μM (R2 = 0.999) with a low detection limit of 12 nM (S/N = 3). Additionally, the sensor has been successfully applied to detect hydrazine in real water samples and the recoveries were between 98.2% and 105.6%. Eventually, the sensor exhibited an excellent stability and reproducibility as a promising method for determination of hydrazine.  相似文献   

15.
A micro-solid-phase extraction (μ-SPE) device was developed by filling copper(II) isonicotinate coordination polymer (Cu(4-C5H4N-COO)2(H2O)4) into a porous polypropylene envelope, and the μ-SPE, coupling with gas chromatography (GC) with a micro-cell electron capture detector (μ-ECD), was used for extraction and determination of PBDEs in soils. Variables affecting extraction procedures, including temperature, water volume, extraction time, and desorption time, were investigated in a spiked soil, and the parameters were optimized. Under the optimal experimental conditions, the method detection limits for seven PBDEs (BDE-28, 47, 99, 100, 153, 154, and 183) were in the range of 0.026–0.066 ng g−1, and the reproducibility was satisfactory with the relative standard deviation in range of 1.3–10.1%. Good linear relationship between PBDEs concentrations and GC signals (defined as peak area) was obtained in the range between 0.1 and 200 ng g−1. The recovery of the seven PBDEs by μ-SPE varied from 70 to 90%, which was comparable to that determined by accelerated solvent extraction method. Finally, the proposed method was used to determine PBDEs in several field-contaminated soils, and it was suggested that the μ-SPE is a promising alternative microextraction technique for the detection of PBDEs in soils.  相似文献   

16.
Pre-concentration and determination of 8 phenolic compounds in water samples has been achieved by in situ derivatization and using a new liquid–liquid microextraction coupled GC–MS system. Microextraction efficiency factors have been investigated and optimized: 9 μL 1-undecanol microdrop exposed for 15 min floated on surface of a 10 mL water sample at 55 °C, stirred at 1200 rpm, low pH level and saturated salt conditions. Chromatographic problems associated with free phenols have been overcome by simultaneous in situ derivatization utilizing 40 μL of acetic anhydride and 0.5% (w/v) K2CO3. Under the selected conditions, pre-concentration factor of 235–1174, limit of detection of 0.005–0.68 μg/L (S/N = 3) and linearity range of 0.02–300 μg/L have been obtained. A reasonable repeatability (RSD ≤ 10.4%, n = 5) with satisfactory linearity (0.9995 ≥ r2 ≥ 0.9975) of results illustrated a good performance of the present method. The relative recovery of different natural water samples was higher than 84%.  相似文献   

17.
In this paper, the reduced graphene oxide and multiwall carbon nanotubes hybrid materials (RGO–MWNTs) were prepared and a strategy for detecting environmental contaminations was proposed on the basis of RGO–MWNTs modified electrode. The hybrid materials were characterized by the scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and N2 sorption–desorption isotherms. Due to the excellent catalytic activity, enhanced electrical conductivity and high surface area of the RGO–MWNTs, the simultaneous measurement of hydroquinone (HQ), catechol (CC), p-cresol (PC) and nitrite (NO2) with four well-separate peaks was achieved at the RGO–MWNTs modified electrode. The linear response ranges for HQ, CC, PC and NO2 were 8.0–391.0 μM, 5.5–540.0 μM, 5.0–430.0 μM and 75.0–6060.0 μM, correspondingly, and the detection limits (S/N = 3) were 2.6 μM, 1.8 μM, 1.6 μM and 25.0 μM, respectively. The outstanding film forming ability of RGO–MWNTs hybrid materials endowed the modified electrode enhanced stability. Furthermore, the fabricated sensor was applied for the simultaneous determination of HQ, CC, PC and NO2 in the river water sample.  相似文献   

18.
This work describes the preparation of an electrochemical immunosensor for estradiol based on the surface modification of a screen printed carbon electrode with grafted p-aminobenzoic acid followed by covalent binding of streptavidin (Strept) and immobilization of biotinylated anti-estradiol (anti-estradiol-Biotin). The hormone determination was performed by applying a competitive immunoassay with peroxidase-labelled estradiol (HRP–estradiol) and measurement of the amperometric response at −200 mV using hydroquinone (HQ) as redox mediator. The calibration curve for estradiol exhibited a linear range between 1 and 250 pg mL−1 (r = 0.990) and a detection limit of 0.77 pg mL−1 was achieved. Cross-reactivity studies with other hormones related with estradiol at physiological concentration levels revealed the practical specificity of the developed method for estradiol. A good reproducibility, with RSD = 5.9% (n = 8) was also observed. The operating stability of a single bioelectrode modified with anti-estradiol-Biotin-Strept was nine days when it was stored at 8 °C under humid conditions between measurements. The developed immunosensor was applied to the analysis of certified serum and spiked urine samples with good results.  相似文献   

19.
p-Nitrophenyl organophosphates (OPs) including paraoxon, parathion and methyl parathion, etc, are highly poisonous OPs, for which sensitive and rapid detection method is most needed. In this work, an ultrasensitive electrochemical sensor for the determination of p-nitrophenyl OPs was developed based on ordered mesoporous carbons (OMCs) modified glassy carbon electrode (GCE) (OMCs/GCE). The electrochemical behavior and reaction mechanism of p-nitrophenyl OPs at OMCs/GCE was elaborated by taking paraoxon as an example. Experimental conditions such as buffer pH, preconcentration potential and time were optimized. By using differential pulse voltammetry, the current response of the sensor at −0.085 V was linear with concentration within 0.01–1.00 μM and 1.00–20 μM paraoxon. Similar linear ranges of 0.015–0.5 μM and 0.5–10 μM were found for parathion, and 0.01–0.5 μM and 0.5–10 μM for methyl parathion. The low limits of detection were evaluated to be 1.9 nM for paraoxon, 3.4 nM for parathion and 2.1 nM for methyl parathion (S/N = 3). Common interfering species had no interference to the detection of p-nitrophenyl OPs. The sensor can be applicable to real samples measurement. Therefore, a simple, sensitive, reproducible and cost-effective electrochemical sensor was proposed for the fast direct determination of trace p-nitrophenyl OPs at low potential without deoxygenization.  相似文献   

20.
The enantiomeric fractions present in soil samples may provide information useful in distinguishing recent inputs of DDT from past DDT pollution. In this study, a chromatographic procedure for the determination of the enantiomeric fractions of o,p′-DDT based on heart-cutting multidimensional gas chromatography was developed. The optimization carried out achieved low ratios of DDT degradation (<15%) in the chromatographic system. High selectivity and sensitivity in the detection of the target compounds, with a limit of detection as low as 2.1 pg μL−1, was reached. In addition, high degrees of repeatability (RSD < 2.0%) and reproducibility (RSD < 3.2%) were obtained for the enantiomeric fractions measured in analytical standards and soil samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号