首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LL-37 is an alpha-helical antimicrobial peptide of human origin. It is a 37 residue cathelicidin peptide. This paper explores the use of electrochemical methods to investigate the interaction of LL-37 with phospholipid and lipid A monolayers on a mercury drop electrode. Experiments were carried out in Dulbecco's phosphate buffered saline at pH approximately 7.6. The capacity-potential curves of the coated electrode in the presence and absence of LL-37 were measured using out-of-phase ac voltammetry. The frequency dependence of the complex impedance of the coated electrode in the presence and absence of LL-37 was estimated at -0.4 V versus Ag/AgCl 3.5 mol dm(-3) KCl. The monolayer permeability to ions was studied by following the reduction of Tl(I) to Tl(Hg) at the coated electrode. LL-37 shows no significant interaction with DOPC. However, LL-37 shows a small interaction with DOPG and lipid A within a DOPC monolayer where the monolayer permeability is marginally increased and the zero frequency capacitance (ZFC) is marginally decreased in both cases. LL-37 shows a significant interaction with a lipid A monolayer thereby decreasing the ZFC by 30%. The results concur with the known membrane active properties of LL-37 and establish this electrochemical approach as a key technique for screening peptides.  相似文献   

2.
A study of the interaction of gramicidin A (gA), tert-butyloxycarbonyl-gramicidin (g-BOC), and desformyl gramicidin (g-des) with dioleoyl phosphatidylcholine (DOPC) and DOPC/phosphatidylserine (PS) mixed monolayers on a mercury electrode is reported in this paper. Experiments were carried out in electrolytes KCl (0.1 mol dm(-3)) and Mg(NO3)2 (0.05 mol dm(-3)). The channel-forming properties of the gramicidins were studied by following the reduction of Tl(I) to Tl(Hg). The frequency dependence of the complex impedance of coated electrode surfaces in the presence and absence of the gramicidins was estimated between 65,000 and 0.1 Hz at potentials of -0.4 V versus Ag/AgCl with 3.5 mol dm(-3) KCl. Epifluorescence microscopy was used to qualitatively correlate the interaction of the gramicidin peptides with dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylglycerol (DPPG) at the air-water interface. gA was shown to form Tl+ conducting channels in a DOPC monolayer, while g-BOC and g-des did not. In DOPC-30% PS (DOPC-0.3PS) layers, there is a marked increase in channel activity of all three gramicidin derivatives. None of the peptides facilitate the permeability of the DOPC-0.3PS layer to Cd2+. All three peptides interact with the layer as shown by capacitance-potential curves and impedance spectroscopy indicated by penetration of the peptide into the dielectric, an increase in surface "roughness", and an increased significance of low-frequency relaxations. The order of interaction is gA > g-des > g-BOC. The epifluorescence study of DPPC and DPPG layers at the air-water interface shows a selective action of the different gramicidins.  相似文献   

3.
The thermodynamic ‘total’ charge density is the charge to be supplied to the electrode to keep the applied potential constant when the electrode surface is increased by unity, while the extrathermodynamic ‘free’ charge density is the charge actually experienced by the diffuse layer ions. The total charge density at dioleoylphosphatidylcholine (DOPC) and octadecanethiol (ODT) monolayers and mixed ODT/DOPC bilayers self-assembled on mercury from aqueous solutions was determined from chronocoulometric single potential steps to a final potential negative enough to cause complete desorption of the film. The effect of different alkali metal ions and of tetramethylammonium on DOPC desorption was examined. The total charge for ODT monolayers and ODT/DOPC bilayers, +56±3 μC cm−2, agrees with the value obtained by integration of the current under the reductive desorption voltammetric peaks, only provided the scan rate is higher than 100 mV s−1. An approximate model of the interface of the ODT-coated electrode, which accounts for partial charge transfer from sulfur to mercury and for the degree of dissociation of the sulfhydryl group upon self-assembly, was employed to estimate the free charge density.  相似文献   

4.
Tilted peptides are known to insert in lipid bilayers with an oblique orientation, thereby destabilizing membranes and facilitating membrane fusion processes. Here, we report the first direct visualization of the interaction of tilted peptides with lipid membranes using in situ atomic force microscopy (AFM) imaging. Phase-separated supported dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers were prepared by fusion of small unilamellar vesicles and imaged in buffer solution, in the absence and in the presence of the simian immunodeficiency virus (SIV) peptide. The SIV peptide was shown to induce the rapid appearance of nanometer scale bilayer holes within the DPPC gel domains, while keeping the domain shape unaltered. We attribute this behavior to a local weakening and destabilization of the DPPC domains due to the oblique insertion of the peptide molecules. These results were directly correlated with the fusogenic activity of the peptide as determined using fluorescently labeled DOPC/DPPC liposomes. By contrast, the nontilted ApoE peptide did not promote liposome fusion and did not induce bilayer holes but caused slight erosion of the DPPC domains. In conclusion, this work provides the first direct evidence for the production of stable, well-defined nanoholes in lipid bilayer domains by the SIV peptide, a behavior that we have shown to be specifically related to the tilted character of the peptide. A molecular mechanism underlying spontaneous insertion of the SIV peptide within lipid bilayers and the subsequent removal of bilayer patches is proposed, and its relevance to membrane fusion processes is discussed.  相似文献   

5.
《Supramolecular Science》1997,4(3-4):449-453
Four peptide analogues related to the active sequence YIGSR of laminin have been synthesised. The synthesis and chemical characterisation of the peptides are described. Physicochemical properties of these peptides such as surface activity, spreadability, monolayer formation, as well as their interaction with lipid monolayers and bilayers, have been studied by using Langmuir-Blodgett films and liposomes as membrane models. In spite of their good water solubility, these peptides are able to form stable monolayers at the air/water interface and to insert into lipid monolayers. The interaction with bilayers is soft; they are not able to induce the leakage of entrapped CF nor to modify the microviscosity of bilayers in general. Thus in these models electrostatic forces apparently do not play an important role, as we expected previously according to the electrical charge of bilayers, markers and peptides.  相似文献   

6.
A method to coat hydrophobic surfaces with lipid molecules in a reproducible manner and in which the lipid molecules are resistant to detergent washings, would benefit the development of new ELISA assays. This work presents different approaches to build 1,2-dioleolyl-sn-glycero-3-phosphocholine (DOPC) layers doped with a monosialoganglioside (GM1) supported on silica surfaces, which are stable toward buffer rinsing and washing with surfactant (Tween 20). The three methods employed were: method 1, coadsorption of DOPC:GM1 (0-10 mol%) with the surfactant n-dodecyl-beta-D-maltoside (DDM) from micellar solutions, with successive adsorption and rinsing steps; method 2, vesicle fusion from DOPC: GM1 (0-10 mol%) liposomes; and method 3, deposition of GM1 from organic solvent (chloroform) and exposure to an aqueous environment (hydration method). The vesicle fusion method was also tested in polystyrene surfaces. Cholera toxin subunit B (CTB) was used to detect the presence of GM1 on the formed layers. The results indicated that the vesicle fusion was the only method that was successful in creating stable mono- and bilayers onto hydrophobized and hydrophilic silica, respectively. The mixed micellar solution method was suitable for creating pure lipid (DOPC) monolayers but the incorporation of GM1 in the micelles led to monolayers which were very unstable with respect to buffer rinsing. The hydration method led to monolayers of GM1 that were partly rinsed off by a continuous buffer flow. Adsorption of CTB was found to be proportional to the amount of GM1 present in the liposomes. The amount of CTB adsorbed onto the lipid bilayers was roughly the double as the one determined on the monolayers with the same liposome compositions. The vesicle fusion method was also able to create monolayers of pure DOPC and DOPC:10 mol% GM1 on the polystyrene surfaces.  相似文献   

7.
The membrane binding and model lipid raft interaction of synthetic peptides derived from the caveolin scaffolding domain (CSD) of the protein caveolin-1 have been investigated. CSD peptides bind preferentially to liquid-disordered domains in model lipid bilayers composed of cholesterol and an equimolar ratio of dioleoylphosphatidylcholine (DOPC) and brain sphingomyelin. Three caveolin-1 peptides were studied: the scaffolding domain (residues 83-101), a water-insoluble construct containing residues 89-101, and a water-soluble construct containing residues 89-101. Confocal and fluorescence microscopy investigation shows that the caveolin-1 peptides bind to the more fluid cholesterol-poor phase. The binding of the water-soluble peptide to lipid bilayers was measured using fluorescence correlation spectroscopy (FCS). We measured molar partition coefficients of 10(4) M(-1) between the soluble peptide and phase-separated lipid bilayers and 10(3) M(-1) between the soluble peptide and bilayers with a single liquid phase. Partial phase diagrams for our phase-separating lipid mixture with added caveolin-1 peptides were measured using fluorescence microscopy. The water-soluble peptide did not change the phase morphology or the miscibility transition in giant unilamellar vesicles (GUVs); however, the water-insoluble and full-length CSD peptides lowered the liquid-liquid melting temperature.  相似文献   

8.
The effect of a lipolytic enzyme, pork pancreatic phospholipase A(2), on hybrid bilayer membranes was monitored using voltammetry, impedance spectroscopy and surface plasmon resonance. The hybrid bilayers were prepared by Langmuir-Schaefer transfer of lipid monolayers onto gold electrodes modified with self-assembled alkanethiol monolayers, or by liposome spreading. The electrodes were immersed in the phospholipase aqueous solution to allow adsorption of the enzyme and cleavage of the ester bond in the sn-2 position of phospholipids in the outer leaflet of the hybrid layers. The action of phospholipase A(2) led to perforation of the lipid films. Impedance spectroscopy and surface plasmon resonance were used for monitoring enzyme adsorption, phospholipid hydrolysis and product desorption. The results obtained show that transport efficiency of an electroactive probe, ferrocyanate, and of an electroactive drug, doxorubicin, through the bilayer depends on the action of the enzyme; the state of the lipid layer covering the electrode surface depends on the latter as well. Cyclic voltammetry and electrochemical impedance spectroscopy were used to study this effect. The doxorubicin reduction/oxidation signals appearing at potentials close to those observed using a bare gold electrode indicated facilitated penetration of the drug into the layer. The results obtained were interpreted in terms of pore formation in the lipid matrix; phospholipase A(2) can be considered as a nano-device for high precision perforation of the lipid layer.  相似文献   

9.
The peptide corresponding to the sequence (279-298) of the Hepatitis G virus (HGV/GBV-C) E2 protein was synthesized, and surface activity measurements, pi-A compression isotherms, and penetration of E2(279-298) into phospholipid monolayers spread at the air-water interface were carried out on water and phosphate buffer subphases. The results obtained indicated that the pure E2(279-298) Langmuir monolayer exhibited a looser packing on saline-buffered than on pure water subphase and suggest that the increase in subphase ionic strength stabilizes the peptide monolayer. To better understand the topography of the monolayer, Brewster angle microscopy (BAM) images of pure peptide monolayers were obtained. Penetration of the peptide into the pure lipid monolayers of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) and into mixtures of dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) at various initial surface pressures was investigated to determine the ability of these lipid monolayers to host the peptide. The higher penetration of peptide into phospholipids is attained when the monolayers are in the liquid expanded state, and the greater interaction is observed with DMPC. Furthermore, the penetration of the peptide dissolved in the subphase into these various lipid monolayers was investigated to understand the interactions between the peptide and the lipid at the air-water interface. The results obtained showed that the lipid acyl chain length is an important parameter to be taken into consideration in the study of peptide-lipid interactions.  相似文献   

10.
The lateral assembly of transmembrane (TM) helices gives rise to membrane proteins with complex folds, which play important roles in biochemical processes. Therefore, the assembly of surface-supported bilayers containing TM helices is the first step toward the development of functional biomembrane mimetics. Here we report novel directed assembly of surface-supported lipid bilayers with laterally mobile TM helices. The TM helices were incorporated into lipid monolayers at the air/water interface, and the monolayers were then transferred onto glass substrates using Langmuir-Blodgett (LB) deposition. Finally, bilayers were assembled using lipid vesicle fusion on top of the LB monolayers. The novelty is the incorporation of the peptides into the monolayer at the first step of bilayer assembly, which allows control over the peptide concentration and orientation. The transmembrane orientation of the peptides was confirmed using oriented circular dichroism (OCD), lateral mobility was assessed using fluorescence recovery after photobleaching (FRAP), and diffusion coefficients were determined using a novel boundary profile evolution (BPE) method. The described directed-assembly approach can be used to develop versatile bilayer platforms for studying membrane proteins interactions in native bilayer environments.  相似文献   

11.
The membrane states of the alpha-series ganglioside GM1alpha in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) mixed monolayers and hybrid bilayers were investigated using atomic force microscopy (AFM). The AFM image for the GM1alpha/DOPC/DPPC ternary monolayers showed the formation of GM1alpha-raft in the DOPC matrix. As increase of the surface pressure, GM1alpha are condensed in DPPC-rich domains; long and slender GM1alpha-rafts are separated from the DPPC-rich domains into the DOPC matrix. The GM1alpha/DOPC/DPPC ternary monolayers were deposited on mica coated with the first layer (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine: DPPE) using the Langmuir-Schaeffer technique. The AFM image for the hybrid bilayers showed that same molecules were heterogeneously concentrated according to increase of the surface pressure to form GM1alpha-raft, DPPC-rich domain and DOPC matrix, being in agreement with the observation on the monolayer experiment. The found phenomenon implies that a binding of lectin to GM1alpha causes the increase of the surface pressure, the localization of GM1alpha and the succeeding formation of the raft as a first step of a specific signal transduction.  相似文献   

12.
Two decapeptide fragments of the non-structural hepatitis G NS3 protein (GBV-C/HGV), 513-522 (RGRTGRGRSG) and 505-514 (SAELSMQRRG), as well as their palmitoylated derivatives were synthesized. The physico-chemical properties of the peptides were analyzed in both the absence and presence of the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), the negative 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) and the positive 1,2-dioeloyl-3-trimethylammonium-propane (DOTAP) lipid monolayers. Based on their high hydrophilic properties, neither parent peptide presented surface activity and their incorporation into lipid monolayers was low. In contrast, their palmitoylated derivatives showed concentration-dependent surface activity and could be inserted into lipid monolayers to varying degrees depending on their sequence. Compression isotherms showed that the presence of palmitoylated peptides in the subphase resulted in a molecular arrangement less condensed than that corresponding to the pure phospholipid. In concordance with the monolayer results, differential scanning calorimetry (DSC) demonstrated that the parent peptides did not have any effect on the thermograms, while the palmitoylated derivatives affected the thermotropic properties of DPPC bilayers.  相似文献   

13.
The peroxidation reaction of some liposomes, namely egg yolk phosphatidylcholine (PC), dioleoyl- (DOPC) and dilinoleoyl- (DLPC) phosphocholines, promoted by ferrous ions (Fenton reaction) has been studied at the physiological pH value, in the absence and in the presence of calf thymus DNA. A catalytic effect of DNA, where the lag time reduces or is completely annihilated, together with an increase in both the yields and the rates of the reactions, has been observed. This effect of DNA has been attributed to the ability of the three components, liposomes, DNA and Fe2+, to form a stable ternary complex, which produces a reduction of the undulatory fluctuations of the hydrocarbon tails of liposomes and strengthens the packing between the acyl chains in the lipid bilayers, with the consequence of enhancing the liposome crystallinity.  相似文献   

14.
Host-defense, antibiotic peptides are believed to generate their cytolytic effects by interacting with the membranes of bacterial cells. Direct analyses of peptide interactions with real cellular membranes are difficult, however, due to the high complexity of physiological membranes. This review summarizes experimental work aiming to understand peptide-membrane interactions and their relationships with the peptides' biological actions using specific model systems. Varied model assemblies have been constructed that generally aim to mimic the fundamental lipid bilayer organization of the membrane. The model systems we will describe include multilamellar and unilamellar vesicles, planar lipid bilayers, lipid monolayers and micelles, and colorimetric biomimetic membranes. The different artificial models have facilitated examination of specific biological or chemical parameters affecting peptide action, for example the effect of membrane lipid composition on peptide affinities and membrane penetration, the relationship between membrane fluidity and peptide interactions, the conformations of active peptides, and other factors. We evaluate the strengths and limitations of the various approaches, and point to future directions in the field.  相似文献   

15.
Factor X is a blood clotting protein that associates at membrane surfaces to become activated during the coagulation cascade. A molecular level understanding of the protein-membrane phospholipid interactions has not been reached, although it is thought that the protein binds to phospholipids in the presence of calcium through a bridge with the Gla (gamma-carboxyglutamic acid) domain on the protein. In this work, phospholipid Langmuir monolayers have been utilized as model membranes to study factor X association with phospholipid membrane components. Surface pressure measurements indicate that subphase addition of sodium, magnesium, and calcium ions enhances protein penetration of the lipid monolayer, with the largest association found with calcium ions in the subphase. Fluorescence microscopy images collected after protein penetration of lipid monolayers indicate monolayer condensation in the presence of sodium and magnesium ions. Aggregation of lipid domains is induced when calcium is in the subphase, indicating binding-induced flocculation of surface lipid aggregates. Calcium binding to factor X likely causes a conformational change which allows protein-membrane interaction via hydrophobic association with lipid molecules.  相似文献   

16.
In the work presented, thiol- and COOH-terminated dipyrromethene derivatives have been applied for gold electrode modification. Dipyrromethene deposited onto a solid support, after binding Cu2+, can act as a redox active monolayer. The complexation of Cu(II) ions has been performed on the surface of gold electrodes modified with dipyrromethene. The characterization of dipyrromethene-Cu(II) self-assembled monolayers (SAMs) has been done by cyclic voltammetry (CV), wettability contact angle measurements, and atomic force microscopy (AFM). The new electroactive monolayer could be applied for the immobilization of proteins and ssDNA or for electrochemical anion sensing without redox markers in the solution.  相似文献   

17.
We show that cantilever array sensors can sense the formation of supported phospholipid bilayers on their surface and that they can monitor changes in mechanical properties of lipid bilayers. Supported lipid bilayers were formed on top of microfabricated cantilevers by vesicle fusion. The formation of bilayers led to a bending of the cantilevers of 70-590 nm comparable to a surface stress of 27-224 mN/m. Physisorption of bilayers of DOPC and other bilayers on the silicon oxide surface of cantilevers led to a tensile bending of about 70 nm whereas formation of chemisorbed bilayers of mixed thiolated (DPPTE) and non-thiolated lipids (DOPC) on the gold side of cantilevers led to a compressive bending of nearly 600 nm which depended on the ratio of DPPTE to DOPC. First results on bending of bilayer-covered cantilevers due to their interaction with the pore-forming peptide melittin are shown. The results demonstrate that cantilever sensors with immobilized bilayers can be used as model systems to investigate mechanical properties of cellular membranes and may be used for screening of membrane processes involving modification, lateral expansion, or contraction of membranes.  相似文献   

18.
Cell-penetrating peptides are used in the delivery of peptides and biologics, with some cell-penetrating peptides found to be more efficient than others. The exact mechanism of how they interact with the cell membrane and penetrate it, however, remains unclear. This study attempts to investigate the difference in free energy profiles of three cell-penetrating peptides (TAT, CPP1 and CPP9) with a model lipid bilayer (DOPC) using molecular dynamics pulling simulations with umbrella sampling. Potential mean force (PMF) and free energy barrier between the peptides and DOPC are determined using WHAM analysis and MM-PBSA analysis, respectively. CPP9 is found to have the smallest PMF value, followed by CPP1 and TAT, consistent with the experimental data. YDEGE peptide, however, does not give the highest PMF value, although it is a non-cell-permeable peptide. YDEGE is also found to form water pores, alongside with TAT and CPP9, suggesting that it is difficult to distinguish true water pore formation from artefacts arising from pulling simulations. On the contrary, free energy analysis of the peptide-DOPC complex at the lipid-water interface with MM-PBSA provides results consistent with experimental data with CPP9 having the least interaction with DOPC and lowest free energy barrier, followed by CPP1, TAT and YDEGE. These findings suggest that peptide-lipid interaction at the lipid-water interface has a direct correlation with the penetration efficiency of peptides across the lipid bilayer.  相似文献   

19.
The biophysical properties of liposome surfaces are critical for interactions between lipid aggregates and macromolecules. Liposomes formed from cationic lipids, commonly used to deliver genes into cells in vitro and in vivo, are an example of such a system. We apply the fluorescence solvent relaxation technique to study the structure and dynamics of fully hydrated liquid crystalline lipid bilayers composed of mixtures of cationic dioleoyltrimethylammoniumpropane (DOTAP) and neutral dioleoylphosphatidylcholine (DOPC). Using three different naphthalene derivatives as fluorescent dyes (Patman, Laurdan and Prodan) allowed different parts of the headgroup region to be probed. Wavelength-dependent parallax quenching measurements resulted in the precise determination of Laurdan and Patman locations within the DOPC bilayer. Acrylamide quenching experiments were used to examine DOTAP-induced dye relocalization. The nonmonotonic dependence of dipolar relaxation kinetics (occurring exclusively on the nanosecond time scale) on DOTAP content in the membrane was found to exhibit a maximum mean solvent relaxation time at 30 mol % of DOTAP. Up to 30 mol %, addition of DOTAP does not influence the amount of bound water at the level of the sn(1) carbonyls, but leads to an increased packing of phospholipid headgroups. Above this concentration, elevated lipid bilayer water penetration was observed.  相似文献   

20.
Supported thiol/lipid bilayer assembly, one of the most spectacular bilayer systems in recent years, has provided a good model to study biomembranes because of its high mechanical stability. In this work, the structural and conducting property of unmodified Au supported octadecanethiol/phosphatidylcholine bilayers were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The forming process of bilayer was monitored by capacitance plane plot. The normalized membrane capacitance of supported bilayer is 0.52 microF cm(-2). Kinetically controlled voltammograms determined by Butler-Volmer equation were obtained for both thiol monolayer and thiol/lipid bilayer in linear sweep voltammetry. Results of EIS experiment indicate that collapsed sites and pinhole defects exist in thiol monolayer and lipid monolayer, respectively. The difference between the values of experimental and theoretical standard electron transfer rate constant indicates that the conducting mechanism of Au supported thiol monolayer is electron tunneling at collapsed sites. The conducting mechanism of Au supported thiol/lipid bilayer is attributed as the following: the electroactive species could diffuse through pinholes in the lipid monolayer and reach collapsed sites in thiol monolayer, where electron transfer occurs via a tunneling process. The fractional coverage of the lipid monolayer measure by EIS experiments is about 0.98 or higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号