首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The thermal decomposition of natural iowaite of formula Mg6Fe2(Cl,(CO3)0.5)(OH)16·4H2O was studied by using a combination of thermogravimetry and evolved gas mass spectrometry. Thermal decomposition occurs over a number of mass loss steps at 60°C attributed to dehydration, 266 and 308°C assigned to dehydroxylation of ferric ions, at 551°C attributed to decarbonation and dehydroxylation, and 644, 703 and 761°C attributed to further dehydroxylation. The mass spectrum of carbon dioxide exhibits a maximum at 523°C. The use of TG coupled to MS shows the complexity of the thermal decomposition of iowaite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Summary Prediction of the thermal decomposition pathway of the metal complexes is very important from the theoretical and experimental point of view to determine the properties and structural differences of complexes. In the prediction of the decomposition pathways of complexes, besides the thermal analysis techniques, some ancillary techniques e.g. mass spectroscopy is also used in recent years. In the light of the molecular structures and fragmentation components, it is believed that the thermal decomposition pathway of most molecules is similar to the ionisation mechanism occurring in the mass spectrometer ionisation process. In this study, the thermal decomposition pathway of [Ni(dmen)2(H2O)2](acs)2 complex have been predicted by the help of thermal analysis data (TG, DTG and DTA) and mass spectroscopic fragmentation pattern. The complex was decomposed in four stages: a) dehydration between 84-132°C, b) loss of N,N'-dimethylethylenediamine (dmen) ligand, c) decomposition of remained dmen and acesulfamato (acs) by releasing SO2, d) burning of the organic residue to resulting in NiO. The volatile products observed in the thermal decomposition process were also observed in the mass spectrometer ionisation process except molecular peak and it was concluded that the ionisation and thermal decomposition pathway of the complex resembles each other.  相似文献   

3.
Summary A combination of high resolution thermogravimetric analysis coupled to a gas evolution mass spectrometer has been used to study the thermal decomposition of liebigite. Water is lost in two steps at 44 and 302°C. Two mass loss steps are observed for carbon dioxide evolution at 456 and 686°C. The product of the thermal decomposition was found to be a mixture of CaUO4 and Ca3UO6. The thermal decomposition of liebigite was followed by hot-stage Raman spectroscopy. Two Raman bands are observed in the 50°C spectrum at 3504 and 3318 cm-1 and shift to higher wavenumbers upon thermal treatment; no intensity remains in the bands above 300°C. Three bands assigned to the υ1 symmetric stretching modes of the (CO3)2- units are observed at 1094, 1087 and 1075 cm-1 in agreement with three structurally distinct (CO3)2- units. At 100°C, two bands are found at 1089 and 1078 cm-1. Thermogravimetric analysis is undertaken as dynamic experiment with a constant heating rate whereas the hot-stage Raman spectroscopic experiment occurs as a staged experiment. Hot stage Raman spectroscopy supports the changes in molecular structure of liebigite during the proposed stages of thermal decomposition as observed in the TG-MS experiment.  相似文献   

4.
The thermal decomposition of syngenite, K2Ca(SO4)2·H2O, formed during the treatment of liquid manure has been studied by thermal gravimetric analysis, differential scanning calorimetry, high temperature X-ray diffraction (XRD) and infrared emission spectroscopy (IES). Gypsum was found as a minor impurity resulting in a minor weight loss due to dehydration around 100 °C. The main endothermic dehydration and decomposition stage of syngenite to crystalline K2Ca2(SO4)3 and amorphous K2SO4 is observed around 200 °C. The reaction involves a solid-state re-crystallisation, while water and the K2SO4 diffuse out of the existing lattice. The additional weight loss steps around 250 and 350 °C are probably due to presence of larger syngenite particles, which exhibit slower decomposition due to the slower diffusion of water and K2SO4 out of the crystal lattice. A minor endothermic sulphate loss around 450 °C is not due to the decomposition of syngenite or its products or of the gypsum impurity. The origin of this sulphate is not clear.  相似文献   

5.
New transition metal compounds of the general formula Ln(NO3)3·2[N4(CH2)6]·nH2O, where Ln = La, Nd, Sm, Gd, Tb, Dy, Er, Lu, and n = 7-12, were obtained. The compounds and the gases evolved in the course of their thermal decomposition were characterised by thermogravimetric analysis. The measurements were carried out in air and argon environment in order to compare the intermediate products, final products and the mechanism of the thermal decomposition. The combined TG-MS system was used to identify the main volatile products of thermal decomposition and fragmentation processes of the obtained compounds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The preparation and characterization of iron mercury thiocyanate, FeHg(SCN)4 (abbreviated as FMTC) are described. The spectroscopic properties were characterized by X-ray powder diffraction (XRPD), infrared, Raman and UV-Vis-NIR transmission spectra. The thermal stability and thermal decomposition of FMTC were investigated by means of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The intermediates and final products of the thermal decomposition were identified by X-ray powder diffraction at room temperature.  相似文献   

7.
The thermal decomposition of reactive freeze-dried acetate precursors for Sr-Fe-oxides was investigated by means of DTA, TG, mass spectroscopy and X-ray powder diffractometry. In the case of decomposition of Fe(III)-m-oxo-acetate four superimposed main steps are characterized as release of (a) H2O, (b) acetic acid and ketene (c) methane, ketene and CO2 and (d) acetone and CO2. On careful decomposition, single phase γ-Fe2O3 can be formed. The decomposition of freeze-dried mixed Fe-Sr-acetates reflects some aspects of the single acetates, but also an interaction between the components. The interactions result in a lower decomposition temperature of Sr-acetate (release of acetone and formation of SrCO3). The decomposition temperature of SrCO3 in the reactive mixture is also lowered. The simultaneous decomposition of SrCO3 and its reaction with the Fe-component results directly in the formation of the expected complex Sr-Fe-oxide. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The electronic properties and thermal decomposition of 5-methyltetrazole (5MTZ) are investigated using UV photoelectron spectroscopy (UVPES) and theoretical calculations. Simulated spectra of both 1H- and 2H-5MTZ, based on electron propagator methods, are produced in order to study the relative tautomer population. The thermal decomposition results are rationalized in terms of G2(MP2) results. 5MTZ yields a HOMO ionization energy of 10.82 ± 0.04 eV and the gas-phase 5MTZ assumes predominantly the 2H-form. Its gas-phase thermal decomposition starts at ca. 195 °C and leads to the formation of N2,CH3CN and HCN. N2 is formed from two competing routes, involving 150.2 and 126.2 kJ/mol energy barriers, from 2H- and 1H-5MTZ, respectively. CH3CN is formed also from two competing pathways, requiring activation energies of 218.3 (2H-5MTZ) and 198.6 kJ/mol (1H-5MTZ). Conclusions are also drawn in order to explain the formation of HCN from secondary reactions in the thermal decomposition process.  相似文献   

9.
Two-dimensional infrared (2D IR) correlation spectroscopy was applied to study the structural changes occurring in the decomposition of PHEA-co-MMA/SiO2. Complicated absorption spectral changes were observed in the heating process. 2D IR analysis indicates that during heating, covalent bonds, (Si-O-C), between the polymer and the inorganic moiety were formed, which was the main factor in the improvement in thermal properties of the hybrids such as the decomposition temperatures (Td). The thermal stability of the hybrids was also studied by solid-state 29Si MAS NMR spectroscopy and TGA tests. Their results complemented each other well.  相似文献   

10.
The thermal dissociation of the atmospheric constituent methyl formate was probed by coupling pyrolysis with imaging photoelectron photoion coincidence spectroscopy (iPEPICO) using synchrotron VUV radiation at the Swiss Light Source (SLS). iPEPICO allows threshold photoelectron spectra to be obtained for pyrolysis products, distinguishing isomers and separating ionic and neutral dissociation pathways. In this work, the pyrolysis products of dilute methyl formate, CH3OC(O)H, were elucidated to be CH3OH + CO, 2 CH2O and CH4 + CO2 as in part distinct from the dissociation of the radical cation (CH3OH+• + CO and CH2OH+ + HCO). Density functional theory, CCSD(T), and CBS-QB3 calculations were used to describe the experimentally observed reaction mechanisms, and the thermal decomposition kinetics and the competition between the reaction channels are addressed in a statistical model. One result of the theoretical model is that CH2O formation was predicted to come directly from methyl formate at temperatures below 1200 K, while above 1800 K, it is formed primarily from the thermal decomposition of methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号