首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Influences of temperature and humidity on the drying dissipative patterns of colloidal crystals of silica spheres (103 nm in diameter) were studied. The broad ring pattern, which is one of the typical macroscopic drying structures, became sharp as temperature rose and/or humidity decreased. Furthermore, number of the spoke-like cracks decreased as temperature and/or humidity increased. The water evaporation from a liquid surface to air and the convectional flow of water and colloidal spheres were important for the macroscopic pattern formation.  相似文献   

2.
Radical polymerization of tetrafluoroethylene (TFE) in solutions of trimethoxysilanes leads to the formation of fluoroalkoxysilane oligomers and the products of their subsequent hydrolysis and dimerization that occur when methoxyl groups are replaced by hydroxyl groups and Si–O–Si links to bind the oligomers are subsequently formed. The chain length of the oligomers increases with the initial TFE concentration, thereby leading to the formation of colloidal solutions. Colloid particles contain oligomers and solvent molecules, the number of which per TFE unit decreases as the chain length grows to 4–6. Partial replacement of the starting solvents, which are also capable of creating a silicone skeleton during polycondensation, makes it possible to control the number of fluoroalkyl chains attached to this skeleton.  相似文献   

3.
Aerogels of the tetrafluoroethylene radical polymerization products H(C2F4)nR, where R is the radical formed by the abstraction of a hydrogen atom from a solvent molecule, have been obtained by replacing the solvent with supercritical CO2 and its subsequent rapid evaporation. According to the data of scanning electron and atomic force microscopy, the aerogel consists of loosely bound particles of 1–3 μm in diameter, which is two to three times that of colloid particles in the initial solution, where the particles consist of an oligomer framework filled with solvent molecules. The internal structure of the framework is manifested in the surface topography with a roughness coefficient of 1.6–1.8. High roughness leads to the formation of ultrahydrophobic coatings with contact angles of >160°. A model of supercritical drying in which the solvent is removed from the colloidal particles without alteration of the supramolecular structure is discussed.  相似文献   

4.
Drying dissipative structural patterns formed in the course of drying colloidal crystals of silica spheres (110 nm in diameter) in water, methyl alcohol, ethyl alcohol, 1-propyl alcohol, diethyl ether, and in the mixtures of ethyl alcohol with the other solvents above have been studied on a cover glass. The macroscopic broad rings were formed in the outside edges of the dried film for all the solvents examined. Furthermore, much distinct broad rings appeared in the inner area when the solvents were ethyl alcohol, methyl alcohol, and their mixtures. Profiles of the thickness of the dried films were sensitive to the organic solvents and explained well with changes in the surface tensions, boiling points, and viscosities of the solvents. The macroscopic and microscopic spoke-like crack patterns formed. The drying area (or the drying time) increased (or decreased) as the surface tension of the solvent decreased. However, the absolute values of these drying parameters are determined also by the boiling points of the solvents. Importance of the fundamental properties of the solvents is supported in addition to the characteristics of colloidal particles in the drying dissipative pattern formation.  相似文献   

5.
Although Ca(OH)2 is one of the oldest art and building material used by mankind, little is known about its nanostructural and colloidal characteristics that play a crucial role in its ultimate performance as a binder in lime mortars and plasters. In particular, it is unknown why hydrated lime putty behaves as an irreversible colloid once dried. Such effect dramatically affects the reactivity and rheology of hydrated lime dispersions. Here we show that the irreversible colloidal behavior of Ca(OH)2 dispersions is the result of an oriented aggregation mechanism triggered by drying. Kinetic stability and particle size distribution analysis of oven-dried slaked lime or commercial dry hydrate dispersions exhibit a significant increase in settling speed and particle (cluster) size in comparison to slaked lime putty that has never been dried. Drying-related particle aggregation also leads to a significant reduction in surface area. Electron microscopy analyses show porous, randomly oriented, micron-sized clusters that are dominant in the dispersions both before and after drying. However, oriented aggregation of the primary Ca(OH)2 nanocrystals (approximately 60 nm in size) is also observed. Oriented aggregation occurs both before and during drying, and although limited before drying, it is extensive during drying. Nanocrystals self-assemble in a crystallographically oriented manner either along the 100 or equivalent 110 directions, or along the Ca(OH)2 basal planes, i.e., along [001]. While random aggregation appears to be reversible, oriented aggregation is not. The strong coherent bonding among oriented nanoparticles prevents disaggregation upon redispersion in water. The observed irreversible colloidal behavior associated with drying of Ca(OH)2 dispersions has important implications in heritage conservation, particularly considering that nowadays hydrated lime is often the preferred alternative to portland cement in architectural heritage conservation. Finally, our study demonstrates that, fortuitously, hydrated lime could be one of the first nanomaterials used by mankind.  相似文献   

6.
Pseudoenantiomeric ethynylhelicene oligomers containing a disulfide group formed two‐component gels, which showed different solvent properties from gels without the disulfide group. The disulfide gels reacted with gold nanoparticles, and the resulting organic–inorganic composite materials exhibited fluorescence emission between 600–800 nm, along with emission from the oligomers at 450 nm. The disulfide gels and isolated gold nanoparticles loaded with the oligomers did not show the former emission. The 600–800 nm emission reversibly disappeared upon sol formation with heating, which was accompanied by an enhancement of the emission at 450 nm. The novel emission was also observed in the solid state.  相似文献   

7.
The manipulation of colloidal nanoparticles (NPs) in a drying droplet has critical importance not only for several industrial applications but also their assembly into patterns on surfaces. The influence of a tip with hydrophilic or hydrophobic surfaces dipped into a drying droplet on hydrophilic or hydrophobic surfaces on the behavior of 98 nm latex NPs was investigated. The formation of concentric rings on hydrophilic glass surfaces regardless of the surface chemistry of the dipped tip was observed. On the other hand, no pattern formation on hydrophobic surfaces was observed with the insertion of the tip. With a hydrophilic tip, the concentric rings were formed due to stick-slip motion of the solvent contact line resulting from competition between pinning and capillary forces while the capillary effect was not effective until the surface of the tip was changed by adherent NPs making the tip surface available for water adherence with a hydrophobic tip, which results in the pulling of droplet towards the tip. It is also found that the tip thickness and suspension concentration significantly influences the formation of concentric rings on surfaces. This simple procedure can be used to influence the distribution or assembly of NPs in the droplet area.  相似文献   

8.
Drying dissipative patterns of de-ionized suspensions (colloidal crystal-state at high concentrations) of the thermosensitive gels of poly (N-isopropylacrylamide) with various sizes (ca. 400–1,500?nm in diameter at 20?°C) were observed at 20 and 45?°C on a cover glass, a watch glass, and a Petri glass dish. The broad rings were observed and their size decreased as gel concentration decreased. Formation of the monodispersed agglomerated particles and their ordered arrays were observed irrespective of gel size. The macroscopic flickering spoke-like patterns were observed for the gel spheres from 70 to 600?nm in diameter at 20?°C, but almost disappeared for extremely large spheres, poly(N-isopropylacrylamide)(1500-5). This work clarified the formation of the drying microscopic structures of (a) ordered rings, (b) flickering ordered spoke lines, (c) net structure, and (d) lattice-like ordered structures of the agglomerated particles. The ordered rings became rather vague as gel size increased. The large net structures formed so often for large gels. Size effect on the lattice patterns was not recognized so clearly. The role of the electrical double layers around the agglomerated particles and the interaction of the particles with the substrate surfaces during dryness are important for the ordering. The microscopic drying patterns of gel spheres were quite different from those of linear type polymers and also from typical colloidal hard spheres, though the macroscopic patterns such as broad ring formation at the edges of the dried film were similar to each other.  相似文献   

9.
The sedimentation and drying dissipative structural patterns formed during the course of drying colloidal silica spheres (CS550, 560 nm in diameter) in an aqueous suspension have been studied in a glass dish and a watch glass. Broad ring patterns were formed within 20 min in the suspension state by the convectional flow of the colloidal spheres and water. The sedimentary spheres always moved by the convectional flow of water, and the broad ring patterns became sharp with time. The sharpness of the broad rings was sensitive to the change in the room temperature and/or humidity. Colorful macroscopic structures were composed of the broad ring and wave-like patterns, and further colorful and beautiful microscopic fine patterns formed during the solidification processes based on the convectional and sedimentation structures. The drying patterns of the colloidal suspensions containing sodium chloride were different from the structures of CS550 or sodium chloride individuals, which support the synchronous cooperative interactions between the colloidal spheres and the salts.  相似文献   

10.
Material segregation has been reported for industrial spray-dried milk powders, which indicates potential material migration during drying process. The relevant colloidal transport phenomenon and the underlying mechanism are still under debate. This study extended the glass-filament single droplet drying technique to observe not only the drying behaviour but also the dissolution behaviour of the correspondingly dried single particle. At progressively longer drying stage, a solvent droplet (water or ethanol) was attached to the semi-dried milk particle and the interaction between the solvent and the particle was video-recorded. Based on the different dissolution and wetting behaviours observed, material migration during milk drying was studied. Fresh skim milk and fresh whole milk were investigated using water and ethanol as solvents. Fat started to accumulate on the surface as soon as drying was started. At the initial stage of drying, the fat layer remained thin and the solubility of the semi-dried milk particle was much affected by lactose and protein present underneath the fat layer. Fat kept accumulating at the surface as drying progressed and the accumulation was completed by the middle stage of drying. The results from drying of model milk materials (pure sodium caseinate solution and lactose/sodium caseinate mixed solution) supported the colloidal transport phenomena observed for the milk drying. When mixed with lactose, sodium caseinate did not form an apparent solvent-resistant protein shell during drying. The extended technique of glass-filament single droplet approach provides a powerful tool in examining the solubility of individual particle after drying.  相似文献   

11.
Centimeter-scale poly(acrylic acid-co-DVB80) (PAA) 3D colloidal crystal belts were prepared via a novel robust vertical deposition technique based on negative pressure and curvature substrate of the glass vial. The formation of PAA colloidal crystal belts was investigated. The results indicated that curvature could control the dimension of PAA colloidal crystal belts. Well-controlled negative pressure resulted in rapid fabrication of well-defined PAA colloidal crystal belts. Curvature substrate of glass vial could distribute shrinking stress in the process of drying of colloidal films. Strong hydrogen bonding interactions among carboxyl groups on the surface of PAA colloidal particles was responsible for PAA colloidal crystal belts with closed-packing characteristics.  相似文献   

12.
By dissolving branched or linear aniline oligomers in polar solvent and introducing their stock solution into an aqueous acidic medium, sheet-like as well as wire-like supramolecular structures with well-defined morphology were obtained, respectively. These oligomeric supramolecular structures were constructed via a post-synthetic precipitation process, indicating that aniline oligomers are capable of self-assembling in an aqueous medium, which is similar to the reaction medium of aniline chemical polymerization. Possible formation mechanisms of these supramolecular structures were proposed, i.e., sheet-like products were probably constructed by collapsed molecular chains of aniline oligomers with branched units through ππ stacking and hydrogen bonding, whereas formation of the wire-like products was attributed to “oriented-attachment” of collapsed molecular chains of linear aniline oligomers. The findings obtained in this study are supposed to provide useful clues for uncovering the formation mechanism of polyaniline micro-/nanostructures.  相似文献   

13.
Assembly of nanoparticles is a promising route to fabricate devices from nanomaterials. Colloidal crystals are well-defined three-dimensional assemblies of nanoparticles with long-range ordered structures and crystalline symmetries. Here, we use a solvent evaporation induced assembly method to obtain colloidal crystals composed of polyhedral sodium rare earth fluoride nanoparticles. The building blocks exhibit the same crystalline orientation in each colloidal crystal as indicated in electron diffraction patterns. The driving force of the oriented assembly is ascribed to the facet-selected capping of oleic acid molecules on {110} facets of the nanoparticles, and the favorable coordination behavior of OA molecules is explained by the steric hindrance determined adsorption based on the studies of the surface atomic structure of nanocrystals and molecular mechanics simulation of OA molecules. The capping ligands also provide hydrophobic interactions between nanoparticles and further direct the oriented assembly process to construct a face-centered cubic structure. These results not only provide a new type of building block for colloidal crystals, but also clarify the important role of surface ligands, which determine the packed structure and orientations of nanoparticles in the assemblies.  相似文献   

14.
Drying dissipative patterns of deionized suspensions (colloidal crystal state at high concentrations) of the thermo-sensitive gels of poly(N-isopropylacrylamide) with low degree of cross-linking of 0.5% (318 nm and 116 nm in the hydrodynamic diameter at 25 °C and 45 °C) were observed at 20 °C and 45 °C on a cover glass, a watch glass and a Petri glass dish. The broad rings were observed and their size decreased as micro-gel concentration decreased. Formation of the monodispersed agglomerated particles and their ordered arrays were observed. This work clarified the formation of the drying microscopic structures of (a) flickering ordered spoke-lines, (b) ordered rings, (c) net structure, and finally (d) lattice-like ordered structures of the agglomerated particles. The net and lattice structures formed more favorably at higher temperatures and/or higher degree of cross-linking of the gels. Importance of the convectional flow of the agglomerated particles during the drying processes is supported for the ordered array formation. The role of the electrical double layers around the agglomerated particles and the interaction of the particles with the substrate surfaces during dryness are also important for the ordering. The microscopic drying patterns of gel spheres were quite different from those of linear-type polymers and also from typical colloidal spheres, though the macroscopic patterns such as broad ring formation at the edges of the dried film were similar to each other.  相似文献   

15.
Polymer modifications of ultrafine monodispersed colloidal metal oxide particles, smaller than 80 nm in diameter, by the graft-polymerization of styrene to a hydrophilic macromer adsorbed on the surface were investigated. The polymerization in ethanolic silica and titania colloid solution, which had negatively larger ζ-potentials, ?30 and ?42 mV in neutral aqueous solution respectively, gave poly(styrene)–silica or titania composite, being of nonspherical shape. The modifications of colloidal particles, having lower surface energy, such as Al(OH)3 and CeO2–TiO2–SiO2 complex, led to the formation of spherical composites, ranging in size from 500 to 3000 nm, of scattered metal oxide or hydroxide particles.  相似文献   

16.
SiO2气凝胶的非超临界干燥法制备及其形成过程   总被引:23,自引:0,他引:23  
通过对正硅酸乙酯的两步水解-缩聚反应速率的调控,使生成的醇凝胶具有比较完整的网络结构,配合乙醇溶剂替换和正硅酸乙酯乙醇溶液浸泡和陈化,改善和增强凝胶的结构和强度,在分级干燥下实现了SiO2气凝胶的非超临界干燥制备,并采用SEM、TEM、TG-DTA、XRD和吸附-脱附技术等手段对所得气凝胶样品进行表征.结果表明, 该气凝胶是由粒径约10 nm均匀球状纳米粒子构成的具有连续网络结构的低密度多孔材料,密度为200~400 kg•m-3,孔径分布在10~30 nm范围内,孔隙率约为91%,比表面高达625.65 m2•g-1.外观及微观构造与应用超临界干燥制得的气凝胶完全一致.调节反应体系中各组分的配比以及控制两步水解-缩聚过程中酸与碱的加入量可以获得不同密度的块状SiO2气凝胶.  相似文献   

17.
Sedimentation and drying dissipative structural patterns formed in the course of drying colloidal silica spheres (305 nm in diameter) in aqueous suspension have been studied in a glass dish and a watch glass. The broad ring sedimentation patterns formed within several tenth minutes in suspension state by the convectional flow of water and colloidal spheres. The sedimentary spheres always moved by the convectional flow of water, and the broad ring patterns became sharp with time. The width of the broad rings was sensitive to the change in the room temperature and/or humidity. In other words, the patterns became sharp or vague when the room parameters decreased or increased. Colorful macroscopic drying structures were composed of a broad ring and the wave-formed patterns. Iridescent colored fine patterns formed in the solidification processes on the bases of the sedimentation patterns. Beautiful drying patterns were observed for the suspension mixtures of CS300 and NaCl, and were different from the structures of CS300 or NaCl individuals, which support the synchronous cooperative interactions between the colloidal spheres and the salt.  相似文献   

18.
Free-standing silica membranes with hierarchical porosity (ca. 300 nm macropores surrounded by 6-8 nm mesopores) and controllable mesopore architecture were prepared by a dual-templating method, with the structural design aided by mesoscale simulation. To create a two-dimensional, hexagonal macropore array, polymeric colloidal hemisphere arrays were synthesized by a two-step annealing process starting with non-close-packed polystyrene sphere arrays on silicon coated with a sacrificial alumina layer. A silica precursor containing a poly(ethylene) oxide-poly(propylene oxide)-poly(ethylene) oxide (PEO-PPO-PEO) triblock-copolymer surfactant as template for mesopore creation was spin-coated onto the support and aged and then converted into the free-standing membranes by dissolving both templates and the alumina layer. To test the hypothesis that the mesopore architecture may be influenced by confinement of the surfactant-containing precursor solution in the colloidal array and by its interactions with the polymeric colloids, the system was studied theoretically by dissipative particle dynamics (DPD) simulations and experimentally by examining the pore structures of silica membranes via electron microscopy. The DPD simulations demonstrated that, while only tilted columnar structure can be formed through tuning the interaction with the substrate, perfect alignment of 2D hexagonal micelles perpendicular to the plane of the membrane is achievable by confinement between parallel walls that interact preferentially with the hydrophilic components (PEO blocks, silicate, and solvent). The simulations predicted that this alignment could be maintained across a span of up to 10 columns of micelles, the same length scale defined by the colloidal array. In the actual membranes, we manipulated the mesopore alignment by tuning the solvent polarity relative to the polar surface characteristics of the colloidal hemispheres. With methanol as a solvent, columnar mesopores parallel to the substrate were observed; with a methanol-water mixed solvent, individual spherical mesopores were present; and with water as the only solvent, twisted columnar structures were seen.  相似文献   

19.
One of the challenges in organic systems with semiconducting function is the achievement of molecular orientation over large scales. We report here on the use of self-assembly kinetics to control long-range orientation of a quarterthiophene derivative designed to combine intermolecular π-π stacking and hydrogen bonding among amide groups. Assembly of these molecules in the solution phase is prevented by the hydrogen-bond-accepting solvent tetrahydrofuran, whereas formation of H-aggregates is facilitated in toluene. Rapid evaporation of solvent in a solution of the quarterthiophene in a 2:1:1 mixture of 1,4-dioxane/tetrahydrofuran/toluene leads to self-assembly of kinetically trapped mats of bundled fibers. In great contrast, slow drying in a toluene atmosphere leads to the homogeneous nucleation and growth of ordered structures shaped as rhombohedra or hexagonal prisms depending on concentration. Furthermore, exceedingly slow delivery of toluene from a high molecular weight polymer solution into the system through a porous aluminum oxide membrane results in the growth of highly oriented hexagonal prisms perpendicular to the interface. The amide groups of the compound likely adsorb onto the polar aluminum oxide surface and direct the self-assembly pathway toward heterogeneous nucleation and growth to form hexagonal prisms. We propose that the oriented prismatic polymorph results from the synergy of surface interactions rooted in hydrogen bonding on the solid membrane and the slow kinetics of self-assembly. These observations demonstrate how self-assembly conditions can be used to guide the supramolecular energy landscape to generate vastly different structures. These fundamental principles allowed us to grow oriented prismatic assemblies on transparent indium-doped tin oxide electrodes, which are of interest in organic electronics.  相似文献   

20.
Salt-induced protein phase transitions in drying drops   总被引:1,自引:0,他引:1  
Protein phase transitions in drying sessile drops of protein-salt-water colloidal systems were studied by means of optical and atom-force microscopy. The following sequence of events was observed during drop drying: attachment of a drop to a glass support; redistribution of colloidal phase due to hydrodynamic centrifugal stream; protein ring formation around the edge; formation of protein spatial structures inside a protein ring that pass into gel in the middle of the drop; salt crystallization in the shrinking gel. It was assumed that rapid drying of a protein ring over the circle of high colloidal volume fraction and low strength of interparticle attraction leads to formation of colloidal glass, whereas gel forms only in the middle of the drop at very low protein volume fraction and strong attraction between the particles. Before gelation, colloidal particles form fractal clusters. In dried drops of salt-free protein solutions, no visual protein structures were observed. Structural evolution of protein in sessile drying drops of protein-salt aqueous colloidal solutions is discussed on the basis of experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号