首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple biosensor constructed by bulk-modification of carbon ink with manganese dioxide as a mediator was investigated for its ability to serve as amperometric detector for L-ascorbic acid in hydrodynamic mode. The sensor could be operated at pH 5.0 (0.05 M phosphate buffer) and exhibited excellent reproducibility and stability. Optimization of measurement parameters such as applied working potential and pH value were studied in detail. The screen printed electrode exhibited a linear amperometric increase with the concentration of ¶L-ascorbic acid from 50 mg L–1 to 250 mg L–1 and gave a (LOD = 3σ) detection limit of 0.2 mg L–1 (1.172 μmol L–1). The manganese dioxide modified screen printed electrode shows long term stability.  相似文献   

2.
《Electroanalysis》2004,16(4):268-274
An amperometric method for the determination of the neurotoxic amino acid β‐N‐oxalyl‐L ‐α,β‐diaminopropionic acid (β‐ODAP) using a screen printed carbon electrode (SPCE) is reported. The electrode material was bulk‐modified with manganese dioxide and used as a detector in flow injection analysis (FIA). The enzyme glutamate oxidase (GlOx) was immobilized in a Nafion‐film on the electrode surface. The performance of the biosensor was optimized using glutamate as an analyte. Optimum parameters were found as: operational potential 440 mV (vs. Ag/AgCl), flow rate 0.2 mL min?1, and carrier composition 0.1 mol L?1 phosphate buffer (pH 7.75). The same conditions were used for the determination of β‐ODAP. The signal was linear within the concentration range 53–855 μmol L?1 glutamate and 195–1950 μmol L?1 β‐ODAP. Detection limits (as 3σ value) for both analytes were 9.12 and 111.0 μmol L?1, respectively, with corresponding relative standard deviations of 3.3 and 4.5%. The biosensor retained more than 73% of its activity after 40 days of on‐line use.  相似文献   

3.
《Electroanalysis》2006,18(15):1499-1504
An amperometric method for the determination of glucose using a screen printed carbon electrode is reported. The electrode material was bulk modified with rhodium dioxide and the enzyme glucose oxidase immobilized in a Nafion‐film on the electrode surface and investigated for its ability to serve as a detector of glucose in flow injection analysis. The sensor exhibited a linear increase of the amperometric signal with the concentration of glucose in the range of 1–250 mg L?1 with a detection limit (evaluated as 3σ) of 0.2 mg L?1 under optimized flow rate of 0.4 mL min?1 in 0.1 M phosphate buffer (pH 7.5) carrier. At the potential applied (?0.2 V vs. Ag/AgCl), interferences from redox species present in the sample matrix were negligible. The biosensor reported here retained its activity for more than 40 injections or 4 months of storage at 6 °C. The RSD was determined as 1.8% for a glucose concentration of 25 mg L?1 (n=5) with a typical response time of about 28 s.  相似文献   

4.
A carbon paste electrode modified with copper(II) phosphate immobilized in a polyester resin (CuP-Poly) is proposed for voltammetric determination of L-ascorbic acid in pharmaceutical formulations. The modified electrode allows the detection of L-ascorbic acid at lower anodic potentials than observed at unmodified electrodes. Several parameters that can influence the voltammetric response of the proposed electrode such as carbon paste composition, pH, scan rate, and possible interference were investigated. The peak current was proportional to the concentration of ascorbic acid in the range 2.0 x 10(-5) to 3.2 x 10(-3) mol L(-1) with a detection limit of 1.0 x 10(-5) mol L(-1). The stability and repeatability of the electrode for the determination of L-ascorbic acid are also discussed. Amperometric response was also recorded for electrocatalytic oxidation of the L-ascorbic acid. Concentrations of the vitamin C in pharmaceutical formulations (tablets) measured using the modified electrode and a titrimetric method are in agreement at the 95% confidence level and within an acceptable range of error.  相似文献   

5.
采用水热还原氧化法合成了高度分散的具有纳米纤维结构的钾矿型二氧化锰,并将其用来制作检测双氧水浓度的传感器.运用X射线衍射(XRD)仪、电子扫描显微镜(SEM)、透射电子显微镜(TEM)和比表面积(BET)及孔隙度分析仪观察和表征二氧化锰纳米纤维的结构和表面形貌;用电化学工作站(EW)检测其传感性能.结果表明:在pH为7.4的磷酸缓冲溶液中,开路电压为0.2V的条件下对0.1%(w,质量分数)的二氧化锰纳米纤维修饰的玻碳电极(GCE)进行测试,测试结果为随着双氧水的浓度每增加0.1mmo·lL-1,响应电流的峰值就增加约1.3μA,在双氧水的浓度在0.1-1.5mmo·lL-1范围内得到的线性相关系数为0.996,这种电极的高灵敏度和优异的电化学活性可能归因于钾矿型二氧化锰纳米纤维的特殊纳米结构.这种传感器有很高的灵敏度和很好的重现性.综上说明这种廉价并且有很好的电化学活性的材料为设计新型电极生物传感器提供了更大可能.  相似文献   

6.
G M Greenway  P Ongomo 《The Analyst》1990,115(10):1297-1299
Ascorbate oxidase was immobilised on cyanogen bromide activated-Sepharose 4B and incorporated in a flow-injection system with amperometric detection at a glassy carbon electrode at +0.6 V. On passage through the immobilised ascorbate oxidase a fraction of the L-ascorbic acid was converted into dehydroascorbic acid and the decrease in signal was measured. This could be directly related to the amount of L-ascorbic acid present. The calibration graph was linear over the range 0-400 ng ml(-1) with a correlation coefficient of 0.9994. The detection limit (2 sigma) in phosphate buffer (0.08 M, pH 5.5) was 4.0 ng ml(-1). The relative standard deviation for a 200 ng ml(-1) standard was 1.0% (n = 10) and the sampling throughput was 30 samples h(-1). The method was used for the simple and rapid determination of L-ascorbic acid in fruit and vegetable juice.  相似文献   

7.
Simple, strip-type sensors based on 7,7,8,8-tetracyanoquinodimethane-modified graphite were prepared using screen printing techniques. The electrochemical strips operated at low potentials [50 mV at pH 7.0 or 100 mV at pH 4.8 vs. Ag/AgCl (printed)] and had a sensitivity of 3.5–7.1 μA 1 mmol?1L-ascorbic acid. Determination of ascorbic acid concentration was achieved in 30 s and required samples of ca. 30 μl. The current output of the electrodes was found to be relatively insensitive to variations in pH over the range 5.0–8.5. Between 15 and 35 °C, the temperature coefficient was 2.7% °C?1. The printed electrodes were suitable for single determinations but demonstrated adequate stability for periodic re-use. The ascorbic acid concentration in the juice of fresh fruit was determined using the electrochemical printed electrodes and a commercially available enzymatic test kit. Close agreement was observed between the two methods [r=0.9997 (n=12),slope=0.9798]. The limit of detection using the printed sensor for real samples was calculated as 4mg l?1(22 μM).  相似文献   

8.
In this work, batch injection analysis with the amperometric detection (BIA‐AD), employing a detection cell designed to adapt a screen‐printed carbon electrode (SPCE) was used for the first time as a robust electroanalytical system for DNA biosensing applications. The sensitive amperometric detection was used to evaluate the structural changes in double‐stranded DNA (dsDNA) after UV‐C irradiation of its solution for a given time. Batching of DNA samples was performed by precise electronic pipette microinjection of an irradiated sample aliquot onto the unmodified activated SPCE surface incorporated in the BIA‐AD system. Using the optimized experimental conditions (40 μL of 1 mg mL?1 dsDNA in a 0.1 M phosphate buffer of pH 7.4 sampled at the injection speed degree of 6 and detected at the potential of +1.5 V vs silver pseudo‐reference electrode), a time‐dependent response (gradual decrease of amperometric signal up to 58 % after 10 min of the irradiation) was found for the detection of damage to low molecular weight salmon sperm dsDNA. The advantages of this low‐dimensional and cost‐effective measuring system can be utilized not only for the quantification of DNA damage/degradation by UV irradiation, but they are also promising for studying other types of DNA interactions.  相似文献   

9.
制备了一种二氧化锆/还原氧化石墨烯(ZrO2NPs/rGO)复合材料修饰电极的亚硝酸盐电化学传感器,并成功用于亚硝酸盐的检测.采用循环伏安法和电流-时间曲线考察了修饰电极的电化学行为.实验结果表明,ZrO2NPs/rGO复合材料修饰电极对亚硝酸盐具有良好的电流响应.在最优实验条件下,电流-时间曲线中的电流响应信号与亚硝酸盐浓度在3.0×10Symbolm@@_7~1.0×10Symbolm@@_6 mol/L和1.0×10Symbolm@@_6~6.0×10Symbolm@@_6 mol/L的范围内呈良好的线性关系,检测限为1.0×10Symbolm@@_7 mol/L(S/N 3).该传感器灵敏性高、稳定性和重现性好.使用此传感器检测实际样品香肠中的亚硝酸盐的回收率为93.7%~110.4%,相对标准偏差为1.6%~2.1%.  相似文献   

10.
《Electroanalysis》2017,29(2):616-621
Simple and fast methods for the monitoring of phenol‐like compounds are relevant in diverse fields ranging from waste management to neurosciences. Laccases are copper‐containing enzymes, which, depending on their origin, are able to oxidize different phenol compounds at different pH conditions. Through adequate laccase immobilization, disposable screen printed electrodes can be used as interphase to build amperometric phenol sensors. In this work three different laccases were studied for the determination of phenol‐like compounds, two of them are isoenzymes from Trametes trogii and the third one from Rhus vernicifera . Their immobilization on screen printed electrodes is presented for the construction of amperometric sensors. The electrode substrate is composed by graphite screen printed electrodes modified with carbon nanotubes and silica microspheres where, depending on the application, one of the three laccases is adsorbed. As each laccase shows an optimum working pH, they were conveniently selected to determine dopamine at physiological pH and catechol at acid pH. Determinations in the micromolar range were possible in both cases. Chronoamperometry shows to be an effective technique for their determinations, simpler than other electrochemical methods already presented in the literature.  相似文献   

11.
纳米Co3O4型固体pH电极的响应及应用   总被引:2,自引:0,他引:2  
测定酸度目前广泛采用玻璃电极 .然而 ,由于玻璃电极是采用极薄的玻璃膜作为 H+的敏感膜 ,致使电极极易破碎 ,亦难以用于对玻璃有腐蚀作用的体系 ,如含氟体系 .此外它还具有体积大、成本较高、膜阻抗高而难以实现微型化、以及使用前需活化处理等缺点 .多年来对非玻璃型 p H电极的研究一直是个热门的研究课题 .其中以金属 /金属氧化物型固体 p H电极倍受关注 [1~ 6 ] .本文对氧化钴 (Co3 O4 )型固体 p H印刷电极的响应性能、选择性、重现性以及在含氟腐蚀体系 p H测定中的应用进行了研究 .Ф1 2型 p H计 (BECKMAN公司 ) ,2 3 2型饱和…  相似文献   

12.
《Electroanalysis》2005,17(21):1991-1994
The development and performance of an end‐column amperometric detection system integrated with disposable screen‐printed electrodes for capillary electrophoresis is presented. In this system, the electrode and capillary can be easily replaced and the capillary/electrode alignment procedure is straightforward. The use of easily replaceable screen‐printed electrodes offers a tremendous benefit for capillary electrophoresis applications requiring frequent replacement of the working electrode due to fouling. This simple and convenient system is very attractive for routine analyses by capillary electrophoresis with electrochemical detection. The separation and determination of uric acid in human urine is presented.  相似文献   

13.
To develop simple electrochemical immunoassays, a screen printed amperometric microcell with graphite working and Ag/AgCl reference electrodes was tested for the determination of alkaline phosphatase enzyme (ALP) and anti-humanIgG conjugated ALP (alpha-hIgG-ALP) activity in 5-10 microl samples. To ensure reproducible, steady state conditions, the working electrode surface was coated with mass-transport controlling hydrogel layer. The kinetic response curves of the hydrogel coated electrodes were linear. In addition, the hydrogel layer reduced the nonspecific adsorption of the alpha-hIgG-ALP conjugate on the working electrode surface. The measurements were made in the range of 2 divided by 4000 mU ml(-1) enzyme activities using ascorbic acid 2-phosphate (AAP) as the enzyme substrate. AAP is commercially available, non-toxic and has excellent stability. The sensitivity of the determinations was about 71% of the sensitivity which could be achieved using p-aminophenylphosphate (PAPP), a not easily accessible and unstable enzyme substrate. The experimentally determined kinetic parameters of the ALP enzyme catalyzed reactions were the same with the bare and hydrogel layer coated electrodes.  相似文献   

14.
A semi conducting polymer-modified glassy carbon electrode was fabricated by cyclically sweeping in the potential range of −0.4–1.2 V(vs. SCE) or by electrolyzation at constant potential of 1.4 V in 0.5 M sulfuric acid solution containing 1.0 mM Nile Blue. This redox active polymer could successfully be used for the amperometric determination of hemoglobin. The effect of pH was studied for the polymerization of Nile Blue. It was found that the polymerization did not occur in neutral or basic solutions. The formal potential of this film is −410 mV (pH 7.0) which is more negative than that obtained at the bare electrode in the Nile Blue bulk solution. The electrochemical characteristics of this polymer are discussed. The modified electrode could electrocatalyze the reduction of hemoglobin, and a good linear amperometric response could be obtained over the range of 0.05–7.0 mg/mL (correlation coefficient: 0.985). This modified electrode exhibited good stability and reproducibility for long-term use.  相似文献   

15.
纳米氧化铅型固体pH电极的研制及其应用   总被引:3,自引:0,他引:3  
纳米;PbO电极;氢氟酸体系;纳米氧化铅型固体pH电极的研制及其应用  相似文献   

16.
This paper describes the development of screen-printed (SPE) and carbon paste (CPE) sensors for the rapid and sensitive quantification of naphazoline hydrochloride (NPZ) in pharmaceutical formulations. This work compares the electroactivity of conventional carbon paste and screen-printed carbon paste electrodes towards potentiometric titration of NPZ. The repeatability and accuracy of measurements performed in the analysis of these pharmaceutical matrices using new screen printed sensors were evaluated. The influence of the electrode composition, conditioning time of the electrode and pH of the test solution, on the electrode performance were investigated. The drug electrode showed Nernstain responses in the concentration range from 1 × 10(-6) to 1 × 10(-2) mol L(-1) with slopes of 57.5 ± 1.3 and 55.9 ± 1.6 mV per decade for SPE and CPE, respectively, and was found to be very precise and usable within the pH range 3-8. These sensors exhibited a fast response time (about 3 s for both SPE and CPE, respectively), a low detection limit (3.5 × 10(-6) and 1.5 × 10(-6) M for SPE and CPE, respectively), a long lifetime (3 and 2 months for SPE and CPE, respectively) and good stability. The selectivity of the electrode toward a large number of inorganic cations, sugars and amino acids was tested. It was applied to potentiometric determination of NPZ in pure state and pharmaceutical preparation under batch conditions. The percentage recovery values for the assay of NPZ in tablets (relative standard deviations ≤0.3% for n = 4) were compared well with those obtained by the official method.  相似文献   

17.
Xi L  Wu G  Zhu Y 《Journal of chromatography. A》2006,1115(1-2):202-207
A new method for determination of etimicin's (ETM) purity and content is developed by liquid chromatography (LC) and pulsed amperometric detection (PAD). A reversed-phase ion-pair LC method with pulsed amperometric detection on a gold electrode after post-added NaOH is described. The mobile phase consisted of an aqueous solution containing 0.033 mol L(-1) oxalic acid, 0.012 mol L(-1) heptafluorobutyric acid, and 210 mL L(-1) acetonitrile with pH 3.40 adjusting by dilute NaOH solution. The total analysis time was not more than 30 min. The effects of the different chromatographic parameters on the separation were also investigated. A number of commercial samples of etimicin sulfate were analyzed using this method.  相似文献   

18.
A flow injection analysis with integrated amperometric alcohol dehydrogenase biosensor and a handheld Mira‐DS Raman spectrometer have been compared for the determination of ethanol in different samples of alcoholic drinks. The biosensor was constructed from the commercial screen‐printed carbon electrode as amperometric transducer and covered by a thin layer comprising alcohol dehydrogenase, reduced single‐layer graphene oxide, rhodium(IV) dioxide, and glutaraldehyde. Both assemblies were tested on analysis of plum brandy, white rum, vodka, white and red wines, strong dark beer, and non‐alcoholic beer. The two principally different analytical methods were critically compared and some limitations found, especially in case of analysis of red wine and beers. Finally, some future improvements of both analytical tools under test outlined.  相似文献   

19.
In this paper, we have critically evaluated the electrochemical behavior of the products of seven substrates of the enzyme label, alkaline phosphate, commonly used in electrochemical immunosensors. These products (and the corresponding substrates) include indigo carmine (3-indoyl phosphate), hydroquinone (hydroquinone diphosphate), 4-nitrophenol (4-nitrophenol phosphate), 4-aminophenol (p-aminophenyl phosphate), 1-naphthol (1-naphthyl phosphate), phenol (phenyl phosphate), and L-ascorbic acid (2-phospho-L-ascorbic acid). Cyclic voltammetry and amperometry of these products were carried out at glassy carbon (GC), screen-printed carbon (SPC) and gold (Au) electrodes, respectively. Among the products, L-ascorbic acid showed the most sensitive (24.8 microA cm(-2), 12.0 microA cm(-2), and 48.0 microA cm(-2) of 100 microM ascorbic acid at GC, SPC, and Au electrodes, respectively) and well-defined amperometric response at all electrodes used, making 2-phospho-l-ascorbic acid the best substrate in electrochemical detection involving an alkaline phosphatase (ALP) enzyme label. The 2-phospho-L-ascorbic acid is also commercially available and inexpensive. Therefore, it was the best choice for electrochemical detection using ALP as label. Using mouse IgG as a model, an ALP enzyme-amplified sandwich-type amperometric immunosensor was constructed. The immunosensor was designed by electropolymerization of o-aminobenzoic acid (o-ABA) conductive polymer on the surface of GC, SPC, and Au electrodes. The anti-mouse IgG was subsequently attached on the electrode surface through covalent bonding between IgG antibody and the carboxyl groups from poly(o-ABA). Using 2-phospho-L-ascorbic acid as a substrate, the poly(o-ABA)/Au immunosensor produced the best signal (about 297 times of current density response ratio between 1000 ng mL(-1) and 0 ng mL(-1) of mouse IgG), demonstrating that amperometric immunosensors based on a conducting polymer electrode system were sensitive to concentrations of the mouse IgG down to 1 ng mL(-1), with a linear range of 3-200 ng mL(-1) (S.D.<2; n=3), and very low non-specific adsorption.  相似文献   

20.
Peña N  Reviejo AJ  Pingarrón JM 《Talanta》2001,55(1):179-187
The fabrication and performance of a reticulated vitreous carbon (RVC)-based tyrosinase flow-through electrode, in which the enzyme was covalently immobilized, is reported. The bioelectrode was tested as an amperometric detector for phenolic compounds. Variables affecting the construction of the enzyme flow-through electrode such as the RVC chemical pretreatment procedure, the enzyme immobilization method in the RVC matrix, the enzyme loading and the pH value of the buffer solution used, were optimized by flow-injection with amperometric detection. A good immobilization of the enzyme in the RVC matrix, in spite of the hydrodynamic conditions, was found. The same tyrosinase-RVC electrode could be used with no significant loss of the amperometric response for around 20 days, and reproducible responses could be achieved with different electrodes constructed in the same manner. Moreover, the operational stability of the bioelectrode was tested under continuous monitorization conditions. Calibration plots by flow injection with amperometric detection at -0.20 V were obtained for phenol, 2,4-dimethylphenol; 3-chlorophenol; 4-chlorophenol; 4-chloro-3-methylphenol and 2-aminophenol, with detection limits ranging from 2 mug l(-1) (4-chloro-3-methylphenol) to 2 mg l(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号