首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
建立了同时检测苹果中多菌灵、噻菌灵和甲基托布津残留量的高效液相色谱(HPLC)分析方法.样品经乙酸乙酯提取,旋转蒸发仪浓缩,氮气吹干甲醇定容后,采用配有二极管阵列检测器(DAD)的HPLC测定,外标法定量.在添加不同浓度的标准品时,多菌灵、噻菌灵和甲基托布津的添加回收率分别为87.7%~118.7%、72.8%~80.3%、64.0%~66.8%.方法对多菌灵、噻菌灵和甲基托布津3种农药的检出限较低,分别为0.134、0.230和0.250mg/L,可以满足苹果汁中多菌灵、噻菌灵和甲基托布津的残留限量检测要求.检测果皮样品中的农药残留量,多菌灵的残留量为7.24×10-2mg/kg,噻菌灵和甲基托布津未检出,低于国标中规定的残留限量标准.  相似文献   

2.
固相萃取-HPLC法测定浓缩梨汁中噻菌灵、多菌灵的残留量   总被引:2,自引:0,他引:2  
研究了一种可同时测定浓缩梨汁中噻菌灵和多菌灵残留量的固相萃取-高效液相色谱分析方法.浓缩梨汁样品与水按一定比例稀释后,经过调pH、离心、过滤,用混合相固相萃取小柱(Mixed-mode SPE)进行提取、净化,用配有二级管阵列检测器(DAD)的液相色谱仪检测,外标法定量.使用噻菌灵和多菌灵对照品进行添加回收率测定,结果显示本方法对噻菌灵的最低检出限为0.020 mg/kg,回收率为80.5%~84.3%;对多菌灵的最低检出限为0.020 mg/kg,回收率为83.2%~92.5%;测定的相对标准偏差均不大于5%.本方法简单、快速、准确,能满足常规噻菌灵和多菌灵残留量检测的需要.  相似文献   

3.
建立了同时测定浓缩果汁中甲基硫菌灵(TM)、2-氨基苯并咪唑(2-AB)、多菌灵(MBC)、噻菌灵(TBZ)及5-羟基噻菌灵(5-OH-TBZ)的液相色谱-串联质谱法。选取7种代表性浓缩果汁进行研究,果汁样品先用乙腈提取,经PSA柱净化后,用ZORBAX Eclipse XDB-C18柱分离,以10 mmol/L乙酸铵-0.1%甲酸和甲醇为流动相进行梯度洗脱,四极杆串联质谱(MS/MS)采用电喷雾正离子(ESI+)和多反应监测模式(MRM)检测。结果表明:在0.02~0.2 mg/L质量浓度范围内各待测物质的线性关系良好,相关系数均不小于0.998 5;2-氨基苯并咪唑和5-羟基噻菌灵的定量下限为2.0μg/kg,甲基硫菌灵、多菌灵和噻菌灵的定量下限均为1.0μg/kg。当2-氨基苯并咪唑和5-羟基噻菌灵的加标水平为2、4、20μg/kg,噻菌灵、多菌灵、甲基硫菌灵的加标水平为1、2、10μg/kg时,回收率为70%~110%,相对标准偏差为0.1%~10.9%;该方法能有效检测出多种浓缩果汁中此5种杀菌剂及其代谢物的残留量,且稳定性好,结果可靠。  相似文献   

4.
应用高效液相色谱法测定了柑橘中多菌灵、噻菌灵、甲基硫菌灵和硫菌灵的残留量。样品用乙腈提取后,经氨基活性碳复合固相萃取小柱净化处理,以甲醇-水混合溶液为流动相梯度洗脱,经ZORBAX Extend-C18(150 mm×4.6 mm,5μm)色谱柱分离,在267 nm波长处,用紫外检测器检测。4种菌灵农药的质量浓度在0.1~10.0 mg.L-1范围与其峰面积呈线性关系,检出限(3S/N)均为0.05 mg.kg-1。方法对多菌灵、噻菌灵、甲基硫菌灵和硫菌灵的平均回收率在75.0%~98.7%之间,相对标准偏差(n=7)在3.2%~14.3%之间。  相似文献   

5.
报道了固相萃取-高效液相色谱法测定浓缩苹果汁中多菌灵残留量的方法.样品经适量水稀释后,C18固相萃取柱提取净化,用V(甲醇)∶V(二氯甲烷)=1∶1淋洗,HPLC法测定.在添加水平为0.10,0.50,2.0 mg/kg时,多菌灵的回收率在92.6%~108.3%之间;RSD<3% (n=6),检出限为0.02 mg/kg,该方法的测定结果满足农药残留量的检测要求.  相似文献   

6.
研究了一种可同时测定浓缩刺梨汁中噻菌灵和多菌灵残留量的固相萃取-高效液相色谱法。浓缩刺梨汁样品与水按一定比例稀释后,经过调pH、离心、过滤,用混合相固相萃取小柱(Mixed—mode SPE)进行提取、净化,用配有二级管阵列检测器(DAD)的液相色谱仪检测,外标法定量。用噻菌灵和多菌灵对照品进行添加回收率测定,结果显示本方法对噻菌灵的测定低限为0.020mg/kg,回收率为77.5%~87.1%;对多菌灵的测定低限为0.020mg/kg,回收率为74.0%~96.3%;测定的相对标准偏差均不大于7.4%。本方法能满足常规噻菌灵和多菌灵残留量检测的需要。  相似文献   

7.
建立了一种可同时测定浓缩菠萝汁中噻菌灵和多菌灵残留量的反相高效液相色谱分析法。浓缩菠萝汁样品与水按一定比例稀释后,经过调节溶液的pH值、离心、过滤,用混合相固相萃取小柱(Mixed-mode SPE)进行提取、净化,并用配有二极管阵列检测器(DAD)的液相色谱仪检测,外标法定量。使用噻菌灵和多菌灵对照品进行添加回收率测定,结果显示,本方法对噻菌灵的检出限为0.020 mg/kg,回收率为75.7%~93.3%;对多菌灵的检出限为0.020 mg/kg,回收率为80.8%~99.2%;测定的相对标准偏差均不大于5.7%。本方法简单、快速、准确,能满足常规噻菌灵和多菌灵残留量检测的需要。  相似文献   

8.
建立了一种可同时测定浓缩柑橘汁中噻菌灵和多菌灵残留量的反相HPLC分析法。浓缩柑橘汁样品用水适当稀释后,经过调节pH值、离心、过滤,用混合相固相萃取小柱(m ixed-mode SPE)进行提取、净化,用配有二级管阵列检测器(DAD)的液相色谱仪检测,外标法定量。使用噻菌灵和多菌灵对照品进行添加回收试验,噻菌灵、多菌灵的回收率分别为80.8%~87.1%、82.9%~87.7%,二者的测定下限均为0.020 mg/kg,测定结果的相对标准偏差均不大于7.38%(n=10)。  相似文献   

9.
超高效液相色谱-串联质谱法测定浓缩苹果汁中的熊果苷   总被引:3,自引:0,他引:3  
孔祥虹  何强  乐爱山  吴双民  李建华 《色谱》2010,28(6):632-634
建立浓缩苹果汁样品中熊果苷的固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)检测方法。浓缩苹果汁样品用水溶解、过滤后,用聚苯乙烯-二乙烯基苯共聚物(PS-DVB)固相萃取柱净化,外标法定量。测定时用Eclipse Plus C18色谱柱(100mm×2.1mm,1.8μm)分离,甲醇-水系统梯度洗脱;MS测定采用多反应监测(MRM)模式。熊果苷的检出限为0.02mg/L,在0.04~2.0mg/L的范围内标准溶液的峰面积与质量浓度呈良好的线性关系,回收率为75.2%~102.7%,相对标准偏差(RSD)低于8.9%。该方法简便、快速、灵敏,可用于浓缩苹果汁样品中熊果苷的检测和确证。  相似文献   

10.
建立了蔬菜中多菌灵、甲基硫菌灵、噻菌灵3种苯并眯唑类杀菌剂及其有毒代谢物2-氨基苯并咪唑残留的离子对液相色谱测定方法.样品用乙腈提取和无水硫酸镁盐析后,上层乙腈经PSA和无水硫酸镁混合振荡离心除去杂质和乙腈层中残余水分,再加入离子对试剂,用反相离子对高效液相色谱分离测定.多菌灵、甲基硫菌灵、噻菌灵的添标回收率在80%~110%之间,2.氨基苯并咪唑的回收率在70%~85%之间.多菌灵、甲基硫菌灵、噻菌灵和2-氨基苯并咪唑在实际样品中的检出限分别为0.07、0.09、0.05、0.10 mg/kg.  相似文献   

11.
Recently, a mixed-mode solid-phase extraction (SPE) procedure was developed for rapid extraction and cleanup for determination of the fungicides thiabendazole and carbendazim in various fruit juices. This paper reports the application of that sample preparation procedure to the liquid chromatographic/mass spectrometric determination of these fungicides in apple juice with detection by positive electrospray ionization mass spectrometry (ESI/MS). Response was linear for sample concentrations from 2 to 500 microg/L (ppb). Recoveries averaged 74% (9% RSD) for carbendazim and 93% (9% RSD) for thiabendazole. After SPE cleanup, no matrix supression was observed for the ESI+ response for either compound studied. The method was applied to the analysis of incurred residues in 4 store-bought apple juices; carbendazim levels ranged from 10 to 70 microg/L and thiabendazole levels ranged from less than 2 to 130 microg/L.  相似文献   

12.
Solid-phase extraction (SPE) procedures were developed for rapid cleanup and determination of thiabendazole and carbendazim in orange, apple, and grape juices. Samples were prepared by using an SPE cartridge containing a mixed-mode sorbent with both reversed-phase and strong cation-exchange chemistries. Analysis was by liquid chromatography with photodiode-array UV detection. Orange juice was analyzed by mixed-mode cation-exchange extraction with reversed-phase cleanup; the other juices were analyzed by reversed-phase extraction with cation-exchange cleanup. Recoveries >80% for carbendazim and >90% for thiabendazole. Quantitation limits were 20 microg/L for both analytes.  相似文献   

13.
A dispersive liquid–liquid microextraction (DLLME) method combined with solvolysis reaction for extraction of the carbamate fungicide benomyl as carbendazim from water samples is described. The method is based on the extraction of benomyl from acidified sample solution and its conversion into carbendazim via solvolysis reaction with DMF as organic solvent. The proposed DLLME method was followed by HPLC with fluorimetric detection for determination of benomyl. The proposed method has good linearity (0.998) with wide linear dynamic range (0.01–25 mg/L) and low detection limit (0.0033 mg/L), making it suitable for benomyl determination in water samples.  相似文献   

14.
高洁  陈达炜  赵云峰 《色谱》2018,36(2):143-149
基于强阳离子交换填料(PCX),采用分散微固相萃取前处理技术,结合超高效液相色谱-四级杆-静电场轨道阱高分辨质谱联用技术,建立了一种快速测定葡萄酒和啤酒中多菌灵和噻菌灵的方法。通过对分散微固相萃取技术中PCX用量、洗脱溶剂中氨水的体积分数、乙腈的体积分数和洗脱体积的优化,实现了样品中多菌灵和噻菌灵的有效净化。经BEH C_(18)(50 mm×2.1 mm,1.7μm)色谱柱分离后,通过静电场轨道阱质谱靶向单一离子监测(targeted single ion monitoring,tSIM)结合数据依赖的二级质谱扫描(data dependent tandem mass spectrometry,ddMS~2)采集模式进行定性定量分析。待测物多菌灵和噻菌灵在一定浓度范围内均呈良好线性关系,相关系数R~2≥0.999 9。在葡萄酒和啤酒基质中,多菌灵和噻菌灵的检出限分别为0.02和0.01μg/L,定量限分别为0.06和0.03μg/L。在0.1、1.0、100μg/L 3个添加水平下,多菌灵和噻菌灵的加标回收率分别为95.6%~110.2%和87.5%~102.8%,日内精密度(RSDr)分别为1.8%~5.2%和1.3%~4.8%,日间精密度(RSD_R)分别为4.3%~8.7%和4.8%~9.4%。该方法快速、简便、灵敏,适用于葡萄酒和啤酒中多菌灵和噻菌灵的残留检测。  相似文献   

15.
A simple and fast analytical method was developed for the determination of benzimidazole fungicides (benomyl, carbendazim, thiabendazole, and fuberidazole) in soil samples. The analytes were extracted from the soil samples by means of conventional microwave-assisted extraction, using the non-ionic surfactants polyoxyethylene 10 lauryl ether (POLE) and oligoethylene glycol monooalkyl ether (Genapol X-080) as extractants. Determinations were made by using liquid chromatography with direct fluorescence detection. The use of an analytical column Symmetry C-18 offered short retention times of analytes without the need of any pH regulators with mobile phase methanol-water (50 + 50, v/v). The best results were obtained using 5% (v/v) POLE as extractant with recoveries of the fungicides in spiked soil samples between 71 and 105%. The results were compared with those obtained when Soxhlet extraction was applied to the same soil samples.  相似文献   

16.
A new and simple method has been developed for the determination of a group of four benzimidazole pesticides (carbendazim/benomyl, thiabendazole, and fuberidazole), a carbamate (carbaryl), and an organophosphate (triazophos), together with two of their main metabolites (2-aminobenzimidazole, metabolite of carbendazim/benomyl, and 1-naphthol, metabolite of carbaryl) in soils. First, an ultrasound-assisted extraction (UAE) was performed, followed by evaporation and reconstitution in water. Then, extraction and preconcentration of the analytes was accomplished by two-phase hollow-fiber liquid-phase microextraction (HF-LPME) using 1-octanol as extraction solvent. Parameters that affect the extraction efficiency in HF-LPME technique (organic solvent, pH of the sample, extraction time, stirring speed, temperature, and ionic strength) were deeply investigated. Optimum HF-LPME conditions involved the use of a 2.0 cm polypropylene fiber filled with 1-octanol to extract 10 mL of an aqueous soil extract at pH 9.0 containing 20% (v/v) of NaCl for 30 min at 1440 rpm. Separation and quantification was achieved by HPLC with fluorescence detection (FD). The proposed optimum UAE-HF-LPME-HPLC-FD methodology provided good calibration, precision, and accuracy results for two soils of different physicochemical properties. LODs were in the range 0.001-6.94 ng/g (S/N = 3). With the aim of extending the validation, the HF-LPME method was also applied to different types of waters (Milli-Q, mineral and run-off), obtaining LODs in the range 0.0002-0.57 μg/L.  相似文献   

17.
A method for the determination of metolcarb and diethofencarb in apples and apple juice is developed using solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC). The experimental conditions of SPME, such as the kind of extraction fiber, extraction time, stirring rate, pH of the extracting solution, and desorption conditions are optimized. The SPME is performed on a 60 microm polydimethylsiloxane/divinylbenzene fiber for 40 min at room temperature with the solution being stirred at 1100 rpm. The extracted pesticides on the SPME fiber are desorbed in the mobile phase into SPME-HPLC interface for HPLC analysis. Separations are carried out on a Baseline C18 column (4.6 i.d. x 250 mm, 5.0 microm) with acetonitrile-water (55/45, v/v) as the mobile phase at a flow rate of 1.0 mL/min, and photodiode-array detection at 210 nm. For apple samples, the method is linear for both metolcarb and diethofencarb in the range of 0.05-1.0 mg/kg (r > 0.99), with a detection limit (S/N = 3 ) of 15 and 5 microg/kg, respectively. For apple juice, the method is linear for both metholcarb and diethofencarb over the range of 0.05-1.0 mg/L (r > 0.99) with the detection limit (S/N = 3 ) of 15 and 3 microg/L, respectively. Excellent recovery and reproducibility values are achieved. The proposed method is shown to be simple, sensitive, and organic solvent-free, and is suitable for the determination of the two pesticides in apples and apple juice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号