首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Carboxy-methyl beta-cyclodextrin (CMCD) cavities have been intercalated within the galleries of anionic clay, Mg-Al layered double hydroxide (LDH). The cyclodextrin functionalized LDH has been reported to adsorb neutral and nonpolar guest molecules. X-ray diffraction, IR, and Raman vibrational spectroscopy and (13)C CPMAS NMR have been used to characterize the confined CMCD molecules, whereas molecular dynamics simulations have been used to probe the interlayer arrangement and orientation of the intercalated species. Spectroscopic measurements as well as MD simulations show that there is no significant change in the geometry of the CMCD cavity on intercalation. Within the galleries of the anionic clay, the CMCD anions are arranged as bilayers with the carboxy methyl substituents, located at the narrower opening of the bucket-like cyclodextrin toroid, anchored to the LDH sheet. This arrangement leaves the wider opening of the CMCD anion facing away from the layers allowing the interior of the cyclodextrin cavity to be accessible to guest molecules. Finally, the hydrophobicity of the anchored cyclodextrin cavity has been characterized using fluorescence from pyrene included within it.  相似文献   

2.
Mn-Anderson-C6 and Mn-Anderson-C16, A type of inorganic-organic hybrid molecules containing a large anionic polyoxometalate (POM) cluster and two C6 and C16 alkyl chains, respectively, demonstrate amphiphilic surfactant behavior in the mixed solvents of acetonitrile and water. The amphiphilic hybrid molecules can slowly assemble into membrane-like vesicles by using the POM clusters as polar head groups, as studied by laser light scattering and TEM techniques. The hollow vesicles have a typical bilayer structure with the hydrophilic Mn-Anderson cluster facing outside and long hydrophobic alkyl chains staying inside to form the solvent-phobic layer. Due to the rigidity of the POM polar heads, the two alkyl tails have to bend significantly for the vesicle formation, which makes the vesicle formation more difficult compared to some conventional surfactants. This is the first example of using hydrophilic POM macroions as polar head groups for a surfactant system.  相似文献   

3.
The effects of different alkyl chains of nonionic surfactants and solubilized polar oily material on the solubilizing capacity of binary anionic‐nonionic mixed surfactant systems were studied. This system includes surface tension measurements to determine the critical micelle concentration. Results were analyzed using regular solution theory to obtain the mixed micelle and the interaction parameter β, in order to evaluate the type of interactions of surfactants in the mixed micelle. Solubilizing capacity has been investigated by measuring the optical density of solubilized polar oily materials like octanol, decanol, and dodecanol. The solubilizing phenomenon exhibited by mixed surfactants systems showed better results than that of the individual surfactant system. The amount of solubilization in mixed surfactant increases with increase in carbon chain length of alkyl polyglucoside.  相似文献   

4.
One approach to modeling the second coordination shell of metalloproteins is to pair amide-containing counterions with metal complexes to form hydrogen bonds in the solid state. In a more general approach, we have designed a surfactant counterion that can sustain hydrogen bonding interactions with metal complexes in solution. The surfactant is cationic and incorporates an amide as part of its headgroup to form hydrogen. The surfactant forms hydrogen bonding reverse micelles that accommodate anionic metal complexes in their polar core. In reverse micelles containing an iron(III) hexacyanide complex, spectroscopic evidence suggests that the anion is confined to the polar core region in solution. Single-crystal X-ray diffraction data on the surfactant ferricyanide system reveals a layered structure with interdigitated alkyl chains and an extensive network of hydrogen bonds that link amide groups to the cyanide ligands and to neighboring headgroups.  相似文献   

5.
The aggregation behavior of a novel class of surfactants, p-n-alkylbenzamidinium chlorides, has been investigated. The thermodynamics of aggregation of p-n-decylbenzamidinium chloride mixed with cationic and anionic cosurfactants has been studied using isothermal titration calorimetry. For mixtures of p-n-decylbenzamidinium chloride with n-alkyltrimethylammonium chlorides, the aggregation process is enthalpically more favorable than for the pure n-alkyltrimethylammonium chlorides, probably caused by diminished headgroup repulsion due to charge delocalization in the amidinium headgroup. A critical aggregation concentration between 3 and 4 mM has been extrapolated for p-n-decylbenzamidinium chloride at 40 degrees C, around two times lower than that of similar surfactants without charge delocalization in the headgroup and well comparable to that of similar surfactants with charge delocalization in the headgroup. In mixtures of p-n-decylbenzamidinium chloride with either sodium n-alkylsulfates or sodium dodecylbenzenesulfonate, evidence is found for the formation of bilayer aggregates by the pseudo-double-tailed catanionic surfactants composed of p-n-decylbenzamidinium and the anionic surfactant. These aggregates are solubilized to mixed micelles by excess free anionic surfactant at the measured critical aggregation concentration.  相似文献   

6.
7.
Solvation dynamics of the fluorescence probe, coumarin 102, in anionic surfactant, sodium alkyl sulfate (C(n)H(2n+1)SO(4)Na; n = 8, 10, 12, and 14), and cationic surfactant, alkyltrimethylammonium bromide (C(n)H(2n+1)N(CH(3))(3)Br; n = 10, 12, 14, and 16), micelle solutions have been investigated by a picosecond streak camera system. The solvation dynamics in the time range of 10(-10)-10(-8) s is characterized by a biexponential function. The faster solvation time constants are about 110-160 ps for both anionic and cationic micelle solutions, and the slower solvation time constants for sodium alkyl sulfate and alkyltrimethylammonium bromide micelle solutions are about 1.2-2.6 ns and 450-740 ps, respectively. Both the faster and the slower solvation times become slower with longer alkyl chain surfactant micelles. The alkyl-chain-length dependence of the solvation dynamics in both sodium alkyl sulfate and alkyltrimethylammonium bromide micelles can be attributed to the variation of the micellar surface density of the polar headgroup by the change of the alkyl chain length. The slower solvation time constants of sodium alkyl sulfate micelle solutions are about 3.5 times slower than those of alkyltrimethylammonium bromide micelle solutions for the same alkyl-chain-length surfactants. The interaction energies of the geometry optimized mimic clusters (H(2)O-C(2)H(5)SO(4)(-) and H(2)O-C(2)H(5)N(CH(3))(3)(+)) have been estimated by the density functional theory calculations to understand the interaction strengths between water and alkyl sulfate and alkyltrimethylammonium headgroups. The difference of the slower solvation time constants between sodium alkyl sulfate and alkyltrimethylammonium bromide micelle solutions arises likely from their different specific interactions.  相似文献   

8.
A set of heterodouble‐chained N‐acyltaurate surfactants (abbreviated as m+nP‐T, where m and n were carbon numbers of alkyl chain; P was phenyl; T was taurate) were synthesized. The novel amphiphiles contained sodium taurine as hydrophilic moiety and two different hydrocarbon chains as hydrophobic moiety. One was a long alkyl chain, and the other had an aromatic residue. Their surface properties were determined by Wilhelmy‐plate method, and micellization properties were investigated by fluorescence spectra of extrinsic probe and intrinsic probe. It was found that these surfactants showed some aberrant properties. It was difficult to obtain the equilibrium surface tension and critical micelle concentration (cmc) for the surfactants with two long chains. Pyrene was solubilized in micelle at concentration above cmc, and the fluorescent intensity ratio of the first vibronic peak (373 nm) to the third vibronic peak (383 nm) of pyrene decreased gradually. The aggregation number N, characterized by quenching the phenoxyl residue with methyl viologen (MV2+) as the extrinsic quencher, gradually increased with increasing surfactant concentration. These indicated that more and more molecules packed in a micelle with increasing concentration.  相似文献   

9.
The galleries of an Mg-Al layered double hydroxide have been functionalized by intercalation of carboxymethyl beta-cyclodextrin cavities. The anchored cavities form a random array of identical-sized hydrophobic nanopockets arranged in a bilayer fashion in the interlamellar space of the layered solid. Naphthalene molecules have been included within these cavities by partitioning from a polar solvent. The fluorescence from the included naphthalene shows an unusual behavior--the excimer to monomer emission intensity decreases with increasing concentration of included naphthalene. This is shown to be a consequence of the absence of translational mobility of the naphthalene--cyclodextrin adduct in the functionalized solid. Two types of included naphthalene have been identified: a preformed excimer-like species characterized by the absence of rise time in decay measurements and a monomeric species that is incapable of excimer formation due to the absence of suitably located included naphthalenes in its proximity. The concentration of each species and the enthalpy for excimer formation have been determined from the temperature variation of fluorescence intensities.  相似文献   

10.
The internal surface of an Mg-Al layered double hydroxide has been functionalized by anchoring carboxy-methyl derivatized β-cyclodextrin cavities to the gallery walls. Neutral polyaromatic hydrocarbon (PAH) molecules have been included within the functionalized solid by driving the hydrophobic aromatic molecules from a polar solvent into the less polar interior of the anchored cyclodextrin cavities by a partitioning process. The optical (absorption and emission) properties of the PAH molecules included within the functionalized Mg-Al layered double hydroxide solid are similar to that of dilute solutions of the PAH in non-polar solvents. The unique feature of these hybrid materials is that they are thermally stable over a wide temperature range with their emission properties practically unaltered. Dedicated to Prof J Gopalakrishnan on his 62nd birthday.  相似文献   

11.
The synthesis of lamellar mesostructured Mg(OH)2 was achieved through a surfactant templating route. Amphiphilic compounds with different anionic headgroups (phosphate, sulfate, sulfonate, and carboxylate) were used as surfactants. Control of d spacing was achieved through the use of different alkyl carboxylate amphiphiles. It is proposed that the interaction between the highly reactive oxygen atoms of the anionic surfactants and the highly electrophilic Mg atom leads to the formation of high charge density at the interface between the surfactant molecules and the inorganic precursor. This interaction is very strong and the existence of strong bonds between the headgroup molecules of the surfactant and the Mg atom locks the structure in a preferred orientation, i.e., lamellar mesostructure. The strong interaction thus precludes any phase transformation, and only the lamellar phase of Mg(OH)2 is obtained. Calcination of the surfactant by heating in oxygen flow leads to the collapse of the lamellar mesophase and results in the formation of nonporous MgO.  相似文献   

12.
We have used vibrational sum-frequency spectroscopy to provide the first measurement of the spectrum and orientation of the polar headgroup of a charged alkyl surfactant at the air/water interface. Sum-frequency spectra of sodium dodecyl sulfate (SDS) are used to arrive at all participating elements of the second-order susceptibility tensor. We use these chi(2) elements, together with calculated values of the hyperpolarizability, to determine the tilt of the S-O bond attached to the alkyl chain and the twist of the S-O-C plane. Thus, a full characterization of the orientation of the surfactant headgroup has been achieved. This is the first demonstration of the feasibility of sum-frequency measurements of sulfate modes in the 1100 cm-1 region, opening possibilities for future investigations of surfactant behavior in this spectral region at aqueous and solid interfaces.  相似文献   

13.
The differential excess enthalpy of mixed micelle formation was measured at different temperatures by mixing nonionic hexa(ethylene glycol) mono n-dodecyl ether with anionic sodium dodecyl sulfate or cationic dodecylpyridinium chloride. The experimental data were obtained calorimetrically by titrating a concentrated surfactant solution into a micellar solution of nonionic surfactant. The composition and the size of the mixed nonionic/ionic micelles at different surfactant concentrations were also determined. Pronounced differences in both composition and excess enthalpy were found between the anionic and the cationic mixed system. For both systems, the excess enthalpies become more exothermic with increasing temperature, but for the anionic mixed system an additional exothermic contribution was found which was much less temperature dependent. Temperature dependence of the excess enthalpy was attributed to the effect of the ionic headgroup on the hydration of the ethylene oxide (EO) groups in the mixed corona. Ionic headgroups located in the ethylene oxide layer cause the dehydration of the EO chains resulting in an additional hydrophobic contribution to the enthalpy of mixing. A high affinity of sodium dodecyl sulfate for nonionic micelles and an extra exothermic and less temperature dependent contribution to the excess enthalpy found for the SDS-C(12)E(6) system might be attributed to specific interactions (hydrogen bonds) between the sulfate headgroup and the partly dehydrated EO chain.  相似文献   

14.
惠永正  杨池明 《化学学报》1988,46(3):239-245
合成了三种长链烷基葡萄糖苷即1-O-十二烷基-β-D-葡萄糖(β-DG)、1-O-十二烷基-α-D-葡萄糖(α-DG)以及1-O-十二烷基-β-D葡萄糖醛酸钠(Sβ-DGU)、三种化合物在水中均能形成胶束, 在上述胶束中, 用硼氢化钠对一系列苯基烷基甲酮进行了还原. 在β-DG和α-DG胶束中所得到的还原产物苯基烷基甲醇均具有不同程度的光学活性, 其中苯基乙基甲酮在β-DG胶束中的还原可达到98%e.e.的立体选择性. 根据高疏水性受物不能被还原以及在阴离子胶束(Sβ-DGU)中受物难以还原的实验结果. 得出还原反应在靠近胶束极性头基层的内侧进行, 并提出了二分子糖苷与BH4^-形成的分子间负氢离子配合物是不对称还原得以产生的关键. 上述推论被加入适量的非手性阳离子表面活性剂(CTAB)与β-DG所形成的混合胶束可充分抑制还原反应的立体选择性这一实验事实所证实.  相似文献   

15.
The interaction of a cationic water-soluble porphyrin, 5,10,15,20-tetrakis [4-(3-pyridiniumpropoxy)phenyl]porphyrin tetrakisbromide (TPPOC3Py), with anionic surfactant, sodium dodecyl sulfate (SDS), in aqueous solution has been studied by means of UV-vis, (1)H NMR, fluorescence, circular dichroism (CD) spectra and dynamic laser light scattering (DLLS), and it reveals that TPPOC3Py forms porphyrin-surfactant complexes (aggregates), including ordered structures J- and H-aggregates, induced by association with surfactant monomers below the SDS critical micelle concentration (cmc), and forms micellized monomer upon the cmc, respectively. The position of TPPOC3Py in the micelle is determined, which is not in the micelle core instead of intercalated among the SDS chains, most likely with the pyridinium group extending into the polar headgroup region of the micelle.  相似文献   

16.
The formation of self-assembled monolayers (SAMs) of adsorbed cationic or anionic surfactant molecules on atomically flat H-terminated Si(111) surfaces in aqueous solutions was investigated by in situ AFM measurements, using octyl trimethylammonium chloride (C8TAC), dodecyl trimethylammonium chloride (C12TAC), octadecyl trimethylammonium chloride (C18TAC)) sodium dodecyl sulfate (STS), and sodium tetradecyl sulfate (SDS). The adsorbed surfactant layer with well-ordered molecular arrangement was formed when the Si(111) surface was in contact with 1.0x10(-4) M C18TAC, whereas a slightly roughened layer was formed for 1.0x10(-4) M C8TAC and C12TAC. On the other hand, the addition of alcohols to solutions of 1.0x10(-4) M C8TAC, C12TAC, or SDS improved the molecular arrangement in the adsorbed surfactant layer. Similarly, the addition of a salt, KCl, also improved the molecular arrangement for both the cationic and anionic surfactant layers. Moreover, the adsorbed surfactant layer with a well-ordered structure was formed in a solution of mixed cationic (C12TAC) and anionic (SDS) surfactants, though each surfactant alone did not form the well-ordered layer. These results were all explained by taking into account electrostatic repulsion between ionic head groups of adsorbed surfactant molecules as well as hydrophobic interaction between their alkyl chains, which increases with the increasing chain length, together with the increase in the hydrophobic interaction or the decrease in the electrostatic repulsion by incorporating alcohol molecules into the adsorbed surfactant layer, the decrease in the electrostatic repulsion by increasing the concentration of counterions, and the decrease in the electrostatic repulsion by alternate arrangement of cationic and anionic surfactant molecules. The present results have revealed various factors to form the well-ordered adsorbed surfactant layers on the H-Si(111) surface, which have a possibility of realizing the third generation surfaces with flexible structures and functions easily adaptable to circumstances.  相似文献   

17.
On the basis of the response of solvatochromic probes [Reichardt's betaine dye, pyrene, and 1,3-bis(1-pyrenyl)propane], we have investigated the aggregation behavior of common anionic, cationic, and nonionic surfactants when solubilized within a low-viscosity room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (emimTf2N). We observed possible aggregate formation by all nonionic surfactants included in the study (Brij-35, Brij-700, Tween-20, and Triton X-100), while no aggregation was observed for the cationic surfactant cetyltrimethylammonium bromide. The anionic surfactant sodium dodecyl sulfate does not appear to solubilize within emimTf2N at ambient conditions.  相似文献   

18.
The adsorption of anionic surfactants with different hydrophobic chain lengths onto cellulose fibers pretreated with a cationic polyelectrolyte has been investigated. Five steps are involved in the adsorption process, which was ascribed to the formation of monolayer and bilayer surfactant aggregates. Electrostatic interaction between the residual surface charges followed by hydrophobic interaction among the alkyl chains are considered the main factors in the adsorption process. The adsorption of the anionic surfactant was found to greatly enhance the retention of organic compounds onto the polyelectrolyte-treated cellulose. The coadsorption phenomenon, which was dependent on the saturation level of the adsorbed surfactant, has been explained in terms of the accumulation of the organic solute on the hydrophobic core generated by the adsorbed layer.  相似文献   

19.
The molecular conformation of ionic surfactant in aqueous solution is investigated withfluorescent probes which are intrinsic insurfactant molecules or externally introduced. Quench-lng or pyrene monomer fluorescence by alkyltriphenylphosphonium or N-alkylpyridiniumobeys Stern-Voimer equation, being diffusi6n-controlled dynamic quenching, but the behaviorof quenching with different lengths of alkyl chain is "abnormal", i.e. the longer the chain,the greater the quenching rate constant. The pyrene excimer fluorescence is observed in theaqueous solution of cetyltrimethylammonium bromide (CTMAB), and the inhibition (for cationicquenchers) and promotion (for anionic quenchers) effects of CTMAB on the quenching ofpyrene fluorescence are also observed. The self-coiling conformation of ionic surfactantmolecules in aqueous solution is proposed to be responsible for these observations and theconformation to be dynamic.  相似文献   

20.
The adsorption behaviors of extended anionic surfactants linear sodium dodecyl(polyoxyisopropene)4 sulfate (L-C12PO4S), branched sodium dodecyl(polyoxyisopropene)4 sulfate (G-C12PO4S), and branched sodium hexadecyl(polyoxyisopropene)4 sulfate (G-C16PO4S) on polymethylmethacrylate (PMMA) surface have been studied. The effect of branched alkyl chain on the wettability of the PMMA surface has been explored. To obtain the adsorption parameters such as the adhesional tension and PMMA-solution interfacial tension, the surface tension and contact angles were measured. The experimental results demonstrate that the special properties of polyoxypropene (PO) groups improve the polar interactions and allow the extended surfactant molecules to gradually adsorb on the PMMA surface by polar heads. Therefore, the hydrophobic chains will point to water and the solid surface is modified to be hydrophobic. Besides, the adsorption amounts of the three extended anionic surfactants at the PMMA–liquid interface are all about 1/3 of those at the air–liquid interface before the critical micelle concentration (CMC). However, these extended surfactants will transform their original adsorption behavior after CMC. The surfactant molecules will interact with the PMMA surface with the hydrophilic heads towards water and are prone to form aggregations at the PMMA–liquid interface. Therefore, the PMMA surface will be more hydrophilic after CMC. In the three surfactants, the branched G-C16PO4S with two long alkyl chains exhibits the strongest hydrophobic modification capacity. The linear L-C12PO4S is more likely to densely adsorb at the PMMA–liquid interface than the branched surfactants, thus L-C12PO4S possesses the strongest hydrophilic modification ability and shows smaller contact angles on PMMA surface at high concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号