首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
氯化原位接枝制备CPE-g-MMA接枝共聚物   总被引:4,自引:0,他引:4  
氯化原位接枝制备CPE-g-MMA接枝共聚物;接枝共聚物结构;氯化原位接枝;力学性能  相似文献   

2.
杨璐  王俊程  赵季若  冯莺 《化学通报》2017,80(12):1110-1115
氯化原位接枝过程是一种基于自由基反应的改性聚合物新方法,经该方法改性的聚合物性能显著改变,充分展现了弱影响、强响应的特征。本文简述了氯化原位接枝反应过程、机理,剖析了氯化原位接枝产物的结构特征,并对各类接枝共聚产物结构与性能关系进行了归纳和总结。详细介绍了各类接枝产物的不同用途,例如用于热塑性弹性体、木板粘合剂、增韧改性剂、成膜涂料等。最后对氯化原位接枝过程更广泛的应用及今后的发展趋势进行了展望。  相似文献   

3.
氯化原位接枝反应制备羟基官能化CPE——结构表征   总被引:1,自引:0,他引:1  
以高密度聚乙烯(HDPE)为基体,采用气-固氯化原位接枝反应合成了以氯化聚乙烯(CPE)为骨架聚合物、丙烯酸-2羟基乙酯(HEA)为支链的接枝共聚物.反应中不需要加入任何引发剂,以氯自由基引发接枝及氯代反应,得到羟基官能化CPE接枝聚合物.并用1H-NMR,FT-IR,GPC及X-射线衍射等对接枝共聚物的结构进行了表征.  相似文献   

4.
氯化聚丙烯的熔融接枝改性及其粘接性能;氯化聚丙烯 甲基丙烯酸缩水甘油酯 熔融接枝 粘接  相似文献   

5.
碳纤维表面酰氯化及其与尼龙6的接枝Ⅰ、接枝方法及复合材料的力学性能;阴离子接枝  相似文献   

6.
溶液法马来酸酐接枝氯化聚丙烯的研究   总被引:11,自引:0,他引:11  
采用溶液法用马来酸酐对氯化聚丙烯接枝改性。考察了反应温度、引发剂浓度、单体浓度、溶剂用量等因素对接枝率的影响,测定了反应前后氯含量的变化。采用FT-IR和DSC对产物进行了表征。  相似文献   

7.
碳纤维表面酰氯化及其与尼龙6的接枝Ⅰ、碳纤维接枝复合材料CF/PA6的等温结晶和熔融行为;阴离子接枝;碳纤维/尼龙6复合材料  相似文献   

8.
通过碳纤维(CF)表面官能团的酰氯化,采用阴离子接枝反应制备了表面接枝尼龙6(PA6)的碳纤维. SEM观察表明,接枝PA6的CF表面呈粗颗粒状形态. XPS结果表明,CF表面N/C 比例由接枝前的0.030提高到接枝PA6后的0.061. 接枝率达2.1%以上. 接枝PA6的CF增强了CF与PA6复合材料界面的相互作用,剪切强度提高了14%.  相似文献   

9.
五氯化钼;芳烃C—H键活化;原位偶联反应  相似文献   

10.
嵌段及接枝液晶高分子合成进展   总被引:1,自引:0,他引:1  
本文概述了近年来嵌段及接枝液晶高分子的合成情况,分析了不同合成方法的优缺点,并对其对原位复合材料中的应用作了简单介绍。  相似文献   

11.
Graft copolymerization of low‐density polyethylene (LDPE) with a maleic anhydride (MAH) was performed using intermeshing corotating twin‐screw extruder in the presence of benzoyl peroxide (BPO). The LDPE/polyamide 6 (PA6) and LDPE‐g‐MAH/PA6 blends were prepared in a corotating twin‐screw extruder. The melt viscosity of the grafted LDPE was measured by a capillary rheometer. The grafted copolymer was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microcopy (SEM). The influence of the variation in temperature, BPO and MAH concentration, and temperature on the grafting degree and on the melt viscosity was studied. The grafting degree increased appreciably up to about 0.45 phr and then decreased continuously with an increasing BPO concentration. According to the FTIR analysis, it was found that the amount of grafted MAH on the LDPE chains was ~5.1%. Thermal analysis showed that melting temperature of the graft copolymers decreases with increasing grafting degree. In addition to this, loss modulus (E″) of the copolymers first increased little with increasing grafting and then obviously decreased with increasing grafting degree. Furthermore, the results revealed that the tensile strength of the blends increased linearly with increasing PA6 content. The results of SEM and mechanical test showed that the blends have good interfacial adhesion and good stability of the phase structure, which is reflected in the mechanical properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 267–275, 2010  相似文献   

12.
用单螺杆挤出机制备了马来酸酐-苯乙烯(MAH-St)多单体熔融接枝高密度聚乙烯(HDPE)体系,研究发现添加St共同接枝,可以显著提高接枝物的接枝率.随着St的增加,接枝率先增大后有所降低.当两种单体物质的量比约为1:1时,接枝物的接枝率最高,此时接枝物的熔体流动速率(MFR)最小.即MAH接枝率越高,接枝物的MFR越...  相似文献   

13.
马来酸酐-苯乙烯熔融接枝聚丙烯的影响因素及其性能研究   总被引:24,自引:0,他引:24  
用单螺杆挤出机制备了马来酸酐 (MAH) 苯乙烯 (St)对聚丙烯 (PP)的多组分单体自由基熔融接枝体系 .研究证实了当两种单体物质的量比约为 1∶1时 ,接枝物的接枝率最高 ,而熔体流动速率 (MFR)最大 .对反应体系影响因素的研究表明单体用量和引发剂用量对不同单体用量比的系列接枝物的接枝率会产生不同的影响 ;另外 ,单体用量增加 ,接枝物的MFR减小 ,过氧化二异丙苯 (DCP)用量增加 ,接枝物的MFR增加 .对多单体熔融接枝聚丙烯PP g (MAH co St)的力学性能研究发现 ,选用合适的单体用量比、单体用量和DCP用量时 ,所制备的接枝物可具有与纯PP相当或更佳的力学性能  相似文献   

14.
通过多单体熔融接枝的方法制备出了具有较高接枝率的ABS接枝物 (ABS g (MAH co St) ) ,并对其接枝机理进行了初步探讨 .研究表明 ,MAH、St接枝ABS时 ,反应主要发生在ABS中聚丁二烯的双键部位 .同时 ,当MAH与St的用量比约为 1:1时接枝率达到最高 .ABS g (MAH co St)作为尼龙 6 (PA6 ) ABS共混体系相容剂起到了良好的增容效果 .实验证明 ,相容剂使用前后 ,共混物的相区尺寸由几十 μm减小到 1μm以下 ,且分布更加均匀 ;共混物的拉伸强度和冲击强度等力学性能也同时得到均衡改善 .  相似文献   

15.
Graft-polymerization of acrylic acid (AAc) monomer onto poly(tetraflouroethylene-perflouro vinyl ether) (PFA) copolymer film was carried out using gamma irradiation technique to synthesize grafted copolymer film PFA-g-PAAc (PFA-COOH). The effect of the dose on the degree of grafting of AAc onto PFA film was investigated. The results showed that the degree of grafting increases with increasing the irradiation dose. The grafted [PFA-COOH] film was chemically modified by reaction with aniline to produce modified [PFA-CO-NH-ph] film, followed by sulphonation reaction to introduce sulfonic acid (SO3H) groups to get other modified [PFA-CO-NH-ph-SO3H] film. The chemical structures of the grafted and modified films were identified by FT-IR, XRD, and SEM. It is of particular interest to measure the electrical conductivity of grafted and modified membranes as a function of degree of grafting. It was found that the conductivity of the grafted films increases with increasing the degree of grafting, however a slightly increase in conductivity was observed in [PFA-CO-NH-ph-SO3H] sample. The electrical conductivity property of the modified PFA membranes suggests their possible use for fuel cell applications.  相似文献   

16.
Photografting copolymerization of maleic anhydride (MAH) and styrene (St) onto LDPE film was investigated by using a one-step method, and further thermally induced grafting copolymerization of them was carried out by using a two-step method. Regarding the photografting copolymerization of MAH/St binary monomer system, both conversion percentage (CP) and grafting efficiency (GE) increased with raising the content of MAH in the monomer feed. In addition, the content of MAH in the grafted copolymers also increased with increasing the fraction of MAH in the monomer feed. The formation of LDPE-g-P(MAH-co-St) grafted film was identified by FTIR and ESCA spectroscopy. In the case of grafting copolymerization of MAH/St by the two-step method, grafting copolymerization proceeded slowly compared with the non-grafting copolymerization. The apparent activation energy (Ea) for the non-grafting copolymerization in the solution and the grafting copolymerization on LDPE film was 24 and 82 kJ/mol, respectively, which were noticeably lower than those of MAH/vinyl acetate (MAH/VAC) binary monomer system under the similar grafting conditions. These data of Ea explained why the grafting copolymerization of styrene/MAH took place faster than that of MAH/VAC binary monomer system. The composition of the grafted copolymer chains was largely affected by the composition of the monomer feeds; however, the composition of the non-grafted copolymers nearly remained at 1/1 even in systems with largely different MAH/styrene ratios in monomer feeds. It is indicated that the non-grafting copolymerization proceeded predominantly following alternating copolymerization, but the grafting copolymerization performed random copolymerization.  相似文献   

17.
The mechanism of grafting styrene-butadiene-styrene (SBS) tri-block copolymer with maleic anhydride (MAH) initiated by benzoperoxide (BPO) or 2,2-azo-bis-isobutyronitrile (AIBN) was studied by FTIR and 1H NMR spectroscopies. The variation of CC (double bond) content in SBS-g-MAH was used to verify the different graft mechanisms of BPO and AIBN, indicating that the chemical initiation mechanisms of MAH grafted onto SBS of AIBN is different from that of BPO. The graft reaction occurs by addition on CC for AIBN, while by removal of an allylic hydrogen atom from SBS and by addition on CC at the same time for BPO. The graft efficiency of AIBN is higher than that of BPO in this system.  相似文献   

18.
Maleic anhydride (MAH) was photografted onto low density polyethylene substrates at temperatures above the melting point of MAH. The effects of some principal factors including irradiation temperature, photoinitiators, the intensity of UV radiation, and the far UV radiation on the grafting polymerization were investigated in detail. Percent conversion and grafting efficiency of the polymerizations were determined by the gravimetric method. The contact angles of the grafted film PE-g-PMAH against water and the FTIR spectrum of the grafted film were measured as characterization. The results show that the photografting polymerization of MAH can proceed smoothly at temperatures higher than the melting point of MAH; the far UV radiation and the intensity of the UV radiation affect the grafting polymerization greatly; the photoinitiators also have influence on the polymerization. According to the FTIR spectra, it is clearly confirmed that the grafted film samples contain anhydride groups. The contact angles demonstrate that the wettability of the grafted films is enhanced obviously, especially to those grafted film samples through hydrolysis.  相似文献   

19.
The free‐radical grafting of maleic anhydride (MAH) and styrene (St) onto isotactic polypropylene (iPP) was studied by thermal decomposition of dicumyl peroxide (DCP) using supercritical CO2 as a solvent and swelling agent. Several effects of molar ratio of monomer, soaking temperature and time, reaction time, and reaction pressure on the graft degree were discussed. It was found that the addition of St to the grafting system as a comonomer could significantly enhance the graft degree of the grafted PP. Under the optimal reaction condition, the maximum of iPP grafting MAH and St in supercritical CO2 medium was 10.58%. The chemical structures and properties of grafting copolymers were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The results showed that the supercritical CO2 method had noticeable advantages over the existed method when compared, such as a lower temperature, a higher graft degree, easy separation, and environmentally benign. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Spherical polyethylene/polypropylene (PE/PP) in-reactor blend granules with various ethylene/propylene molar ratios and high porosity were synthesized using a high yield TiCl4/MgCl2 supported catalyst. A solution of benzoyl peroxide (BPO)/maleic anhydride (MAH)/xylene (interfacial reagent) or BPO/MAH/St (comonomer) was absorbed onto the PE/PP inreactor blend granules, and solid phase gratt polymerization of MAH on PE/PP was conducted. The amount of grafted MAH on PE/PP was measured through chemical titration. The results showed that solid phase graft polymerization of MAH in PE/PP in-reactor blend granules produced graft copolymer with high amount of grafted MAH, and the amount of grafted MAH was raised slightly when St was introduced as comonomer. The graft in-reactor blend was fractionated into five fractions through temperature-gradient extraction fractionation (TGEF), and the fractions were analyzed by FTIR. The results revealed that MAH is mainly grafted on the PE segments, whereas MAH was predominantly grafted on the PP segments when St was present in the graft polymerization system. In addition, the final product is still in the form of regular spherical granules, which is beneficial for industrial processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号