首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang Z  Wu H  Chen J  Zhang J  Yao Y  Chen GQ 《Lab on a chip》2008,8(11):1957-1962
A novel protein purification method was developed using microbial polyhydroxyalkanoates (PHA) granule-associated protein phasin, a pH-inducible self-cleaving intein and PHA nanoparticles. Genes for the target proteins to be produced and purified were fused to genes of intein and phasin, the genes were jointly over-expressed in vivo, such as in E. coli cells in this study. The fused proteins containing target protein, intein and phasin produced by the recombinant E. coli were released together with all other E. coli proteins via a bacterial lysis process. They were then adsorbed in vitro to the surfaces of the hydrophobic polymer nanoparticles incubated with the cell lysates. The nanoparticles attached with the fused proteins were concentrated via centrifugation. Then, the reasonably purified target protein was released by self-cleavage of intein and separated with nanoparticles by a simple centrifugation process. Using this system, enhanced green fluorescent protein (EGFP), maltose binding protein (MBP) and beta-galactosidase were successfully purified in their active forms with reasonable yields, respectively, demonstrating the effectiveness and reliability of this purification system. This method allows the production and purification of high value added proteins in a continuous way with low cost.  相似文献   

2.
Inteins are self-cleavable proteins that under reducing conditions can be cleaved from a recombinant target protein. Industrially, an intein-based system could potentially reduce production costs of recombinant proteins by facilitating a highly selective affinity purification using an inexpensive substrate such as chitin. In this study, SuperPro Designer was used to simulate the large-scale recovery of a soluble recombinant protein expressed in Escherichia coli using an intein-mediated purification process based on the commercially available IMPACT system. The intein process was also compared with a conventional process simulated by SuperPro. The intein purification process initially simulated was significantly more expensive than the conventional process, primarily owing to the properties of the chitin resin and high reducing-agent (dithiothreitol [DTT]) raw material cost. The intein process was sensitive to the chitin resin binding capacity, cleavage efficiency of the intein fusion protein, the size of the target protein relative to the intein tag, and DTT costs. An optimized intein purification process considerably reduced costs by simulating an improved chitin resin and alternative reducing agents. Thus, to realize the full potential of intein purification processes, research is needed to improve the properties of chitin resin and to find alternative, inexpensive raw materials.  相似文献   

3.
An efficient self-cleavable purification tag could be a powerful tool for purifying recombinant proteins and peptides without additional proteolytic processes using specific proteases. Thus, the intein-mediated self-cleavage tag was developed and has been commercially available as the IMPACT™ system. However, uncontrolled cleavages of the purification tag by the inteins in the IMPACT™ system have been reported, thereby reducing final yields. Therefore, controlling the protein-splicing activity of inteins has become critical. Here we utilized conditional protein splicing by salt conditions. We developed the inducible intein-mediated self-cleaving tag (IIST) system based on salt-inducible protein splicing of the MCM2 intein from the extremely halophilic archaeon, Halorhabdus utahensis and applied it to small peptides. Moreover, we described a method for the amidation using the same IIST system and demonstrated 15N-labeling of the C-terminal amide group of a single domain antibody (VHH).  相似文献   

4.
A simple method to purify recombinant proteins is described by fusing a target protein with an intein and an elastin-like polypeptide that only requires NaCl, dithiothreitol, and a syringe filter to isolate the target protein from Escherichia coli lysate. This tripartite fusion system enables rapid isolation of the target protein without the need for affinity chromatography for purification or proteases for cleavage of the target protein from the fusion. The elastin-like polypeptide tag imparts reversible phase transition behavior to the tripartite fusion so that the fusion protein can be selectively aggregated in cell lysate by the addition of NaCl. The aggregates are isolated by microfiltration and resolubilized by reversal of the phase transition in low ionic strength buffer. After resolubilizing the fusion protein, the intein is activated to cleave the target protein from the elastin-intein tag, and the target protein is then isolated from the elastin-intein fusion by an additional phase transition cycle.  相似文献   

5.
Low-cost protein purification methods are in high demand for mass production of low-selling price enzymes that play an important role in the upcoming bioeconomy. A simple protein purification method was developed based on affinity adsorption of a cellulose-binding module-tagged protein on regenerated amorphous cellulose (RAC) followed by modest desorption. The biodegradable cellulosic adsorbent RAC had a very high protein-binding capacity of up to 365 mg of protein per gram of RAC. The specifically-bound CBM-protein on the external surface of RAC was eluted efficiently by ethyl glycol or glycerol. This protein separation method can be scaled up easily because it is based on simple solid/liquid unit operations. Five recombinant proteins (CBM-protein), regardless of intercellular or periplasmic form, were purified successfully for demonstration purpose.  相似文献   

6.
Interferons (IFNs) are involved in the pathogenesis and recovery of viral and other infectious diseases. Recombinant IFNs have been used as anti-infectious agents exhibiting a broad range of antiviral and immunomodulatory properties in both human and domestic animals. In this report, we describe a highly efficient and economical approach to purify porcine IFN alpha (PoIFNα) using polyhydroxybutyrate (PHB) as the affinity carrier and intein for self-cleaving removal of the affinity tag. Additionally, the conditions of protein expression and purification have been optimized. Our results suggested that culture medium containing 1.62% (w/v) of sodium lactate dramatically increases the accumulation of PHB binding protein in Escherichia coli cells. High yields of recombinant PoIFNα (30–35 mg/L, 97% purity by high-performance liquid chromatography) were obtained using intein-mediated self-cleaving conditions using a cleavage-inducing buffer with a pH of 6.5 at 20 °C for 24–36 h. The antiviral activity of the recovered recombinant PoIFNα was up to 1.4 × 106 IU/mg of protein ascertained using recombinant human IFNα1 as a standard. This report also demonstrates that large-scale production of intein-mediated purification of highly pure and active recombinant PoIFNα is feasible for the purposes of experimental studies, veterinary clinic therapeutics, and swine infectious disease control.  相似文献   

7.
This paper discusses the elements important for rational design of purification processes for recombinant proteins. Main issues involved in selection of operations and process design are reviewed with particular emphasis on the challenges posed by recombinant proteins. This includes thermodynamic characterization of target protein and main contaminants, use of correlations and of expert knowledge for the development of an expert system for optimization and design (selection) of separation and purification (chromatographic) processes. The main deficiency in accurate information for rational process selection is in that required for high-resolution chromatographic processes. The authors show that a database with detailed information on properties of the main contaminants present in the fermentation streams of usual recombinant protein sources can be integrated to an expert system with an open architecture. This will allow more precise selection of unit operations for the design of protein purification processes.  相似文献   

8.
A mechanically stable cellulose-based chromatography media was synthesized to permit inexpensive affinity purification of recombinant proteins containing the family 9 carbohydrate-binding module (CBM9) fused to either the N- or C-terminus of the target protein. A second-order response surface model was used to identify optimal concentrations of the primary reactants, epichlorohydrin and dimethyl sulfoxide (DMSO), required to cross-link the starting material, Perloza MT100, a compressible but inexpensive cellulose-based chromatography resin. This resulted in a mechanically stable cross-linked affinity chromatography media capable of operating at an order-of-magnitude higher linear velocity than permitted by unmodified MT100. Moments and Van Deemter analyses were used to show that rates of solute mass transfer within the column are largely unaffected by the cross-linking reaction, while the binding capacity decreased by 20% to 7.1 micromol of protein/g resin, a value superior to most commercial affinity chromatography media. In sharp contrast to MT100, the mechanical stability and purification performance of the cross-linked media are not diminished by scale-up or repeated column use.  相似文献   

9.
The efficient refolding of recombinant proteins produced in the form of inclusion bodies (IBs) in Escherichia coli still is a complicated experimental problem especially for large hydrophobic highly disulfide-bonded proteins. The aim of this work was to develop highly efficient and simple refolding procedure for such a protein. The recombinant C-terminal fragment of human alpha-fetoprotein (rAFP-Cterm), which has molecular weight of 26 kDa and possesses 6 S-S bonds, was expressed in the form of IBs in E. coli. The C-terminal 7× His tag was introduced to facilitate protein purification and refolding. The refolding procedure of the immobilized protein by immobilized metal chelating chromatography (IMAC) was developed. Such hydrophobic highly disulfide-bonded proteins tend to irreversibly bind to traditionally used agarose-based matrices upon attempted refolding of the immobilized protein. Indeed, the yield of rAFP-Cterm upon its refolding by IMAC on agarose-based matrix was negligible with bulk of the protein irreversibly stacked to the resin. The key has occurred to be using IMAC based on silica matrix. This increased on-resin refolding yield of the target protein from almost 0 to 60% with purity 98%. Compared to dilution refolding of the same protein, the productivity of the developed procedure was two orders higher. There was no need for further purification or concentration of the renatured protein. The usage of silica-based matrix for the refolding of immobilized proteins by IMAC can improve and facilitate the experimental work for difficult-to-refold proteins.  相似文献   

10.
Protein immobilization on surfaces is useful in many areas of research, including biological characterization, antibody purification, and clinical diagnostics. A critical limitation in the development of protein microarrays and heterogeneous protein-based assays is the enormous amount of work and associated costs in the purification of proteins prior to their immobilization onto a surface. Methods to address this problem would simplify the development of interfacial diagnostics that use a protein as the recognition element. Herein, we describe an approach for the facile, site-specific immobilization of proteins on a surface without any preprocessing or sample purification steps that ligates an intein fusion protein at its C-terminus by reaction with a hydrazine group presented by a surface. Furthermore, we demonstrate that this methodology can directly immobilize a protein directly from cell lysate onto a protein-resistant surface. This methodology is also compatible with soft lithography and inkjet printing so that one or more proteins can be patterned on a surface without the need for purification.  相似文献   

11.
Tobacco protein separation by aqueous two-phase extraction   总被引:13,自引:0,他引:13  
Tobacco has long been considered as a host to produce large quantity of high-valued recombinant proteins. However, dealing with large quantities of biomass is a challenge for downstream processing. Aqueous two-phase extraction (ATPE) has been widely used in purifying proteins from various sources. It is a protein-friendly process and can be scaled up easily. In this paper, ATPE was studied for its applicability to recombinant protein purification from tobacco with egg white lysozyme as the model protein. Separate experiments with poly(ethylene glycol) (PEG)-salt-tobacco extract and PEG-salt-lysozyme were carried out to determine the partition behavior of tobacco protein and lysozyme, respectively. Two-level fractional factorial designs were used to study the effects of factors such as, PEG molecular mass, PEG concentration, the concentration of phase forming salt, sodium chloride concentration and pH, on protein partitioning. The results showed that, among the studied systems, PEG-sodium sulfate system was most suitable for lysozyme purification. Detailed experiments were conducted by spiking lysozyme into the tobacco extract. The conditions with highest selectivity of lysozyme over native tobacco protein were determined using a response surface design. The purification factor was further improved by decreasing the phase ratio along the tie line corresponding to the phase compositions with the highest selectivity. Under selected conditions the lysozyme yield was predicted to be 87% with a purification factor of 4 and concentration factor of 14. From this study, ATPE was shown to be suitable for initial protein recovery and partial purification from transgenic tobacco.  相似文献   

12.
In this contribution we describe the semisynthesis of the potassium channel, KcsA. A truncated form of KcsA, comprising the first 125 amino acids of the 160-amino acid protein, was synthesized using expressed protein ligation. This truncated form corresponds to the entire membrane-spanning region of the protein and is similar to the construct previously used in crystallographic studies on the KcsA protein. The ligation reaction was carried out using an N-terminal recombinant peptide alpha-thioester, corresponding to residues 1-73 of KcsA, and a synthetic C-terminal peptide corresponding to residues 74-125. Chemical synthesis of the C-peptide was accomplished by optimized Boc-SPPS techniques. A dual fusion strategy, involving glutathione-S-transferase (GST) and the GyrA intein, was developed for recombinant expression of the N-peptide alpha-thioester. The fusion protein, expressed in the insoluble form as inclusion bodies, was refolded and then cleaved successively to remove the GST tag and the intein, thereby releasing the N-peptide alpha-thioester. Following chemical ligation, the KcsA polypeptide was folded into the tetrameric state by incorporation into lipid vesicles. The correctness of the folded state was verified by the ability of the KcsA tetramer to bind to agitoxin-2. To our knowledge, this work represents the first reported semisynthesis of a polytopic membrane protein and highlights the potential application of native chemical ligation and expressed protein ligation for the (semi)synthesis of integral membrane proteins.  相似文献   

13.
Incorporation of chemical probes into proteins is a powerful way to elucidate biological processes and to engineer novel function. Here we describe an approach that allows ligation of synthetic molecules to target proteins in an intracellular environment. A cellular protein is genetically tagged with one-half of a split intein. The complementary half is linked in vitro to the synthetic probe, and this fusion is delivered into cells using a transduction peptide. Association of the intein halves in the cytosol triggers protein trans-splicing, resulting in the ligation of the probe to the target protein through a peptide bond. This process is specific and applicable to cytosolic and integral membrane proteins. The technology should allow cellular proteins to be elaborated with a variety of abiotic probes.  相似文献   

14.
Here we demonstrate for the first time the application of intact cell matrix-assisted laser desorption/ionization mass spectrometry (ICM-MS) to study the regulation of protein expression. This technique can be extended to screen the drugs that inhibit protein synthesis in various diseases. We have used Escherichia coli cells expressing a recombinant glutathione-S-transferase (GST) gene under an arabinose-inducible promoter as a model system. Using ICM-MS analysis, we have detected a 28 kDa peak corresponding to the production of recombinant GST under the arabinose-induced condition. Furthermore, recombinant GST protein was purified by a single-step affinity purification using a glutathione Sepharose 4B affinity column from arabinose-induced E. coli cells. The purified GST protein was found to be a 28 kDa protein by MALDI analysis suggesting the arabinose-induced protein is indeed GST. The regulation of protein expression was studied using glucose as an alternative metabolite. The glucose-mediated regulation of the ara-operon was followed using the ICM-MS technique. All the results obtained from ICM-MS data were validated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The present technique can be extended for in vivo screening of drugs and it holds tremendous potential to discover novel drugs against specific protein expressions in different diseases.  相似文献   

15.
Design of an intein that can be inhibited with a small molecule ligand   总被引:1,自引:0,他引:1  
Protein splicing is a process in which an intervening sequence, the intein, catalyzes its own excision out of a larger polypeptide precursor by joining the flanking sequences, the exteins, with a native peptide bond. Inteins are almost completely promiscuous toward the nature of their extein sequences and can be inserted into virtually any host protein. The intein-mediated formation of a peptide bond between two polypeptides offers great potential to modulate protein structure and, hence, protein function on the post-translational level. In this work, we report the design of an intein that can be inhibited by the addition of a specific small molecule ligand. Our design strategy involved the generation of a trans-splicing intein, in which the intein domain is split into two-halves that are located on two separate polypeptides, each joined with the respective N- or C-terminal extein. To turn these fragments into an active intein with an incorporated "off" switch, each was fused at its newly created terminus with the F36M mutant of FKBP12, referred to as the FM domain. The F36M substitution was reported to effect a homodimerization of the usually monomeric FKBP12 protein; however, addition of the small molecule ligand, rapamycin, or synthetic derivatives thereof leads to a dissociation of the dimer. This phenomenon was exploited by first reconstituting the active intein on the basis of FM domain dimerization. Second, addition of the small molecule ligand prevented formation of the active intein complex and inhibited protein trans-splicing. This intein exhibited unexpected kinetic properties and provides a new and potentially very general means to control protein function on the post-translational level.  相似文献   

16.
Prostate apoptosis response-4 (Par-4), an anticancer protein that interacts with cell surface receptor GRP78, can selectively suppress proliferation and induce apoptosis of cancer cells. The core domain of Par-4 (aa 137–195), designated as SAC, is sufficient to inhibit tumor growth and metastasis without harming normal tissues and organs. Nevertheless, the anticancer effects of SAC have not been determined in ovarian cancer cells. Here, we developed a novel method for producing native SAC in Escherichia coli using a small ubiquitin-related modifier (SUMO) fusion system. This fusion system not only greatly improved the solubility of target protein but also enhanced the expression level of SUMO-SAC. After purified by Ni-NTA affinity chromatography, SUMO tag was cleaved from SUMO-SAC fusion protein using SUMO protease to obtain recombinant SAC. Furthermore, we simplified the purification process by combining the SUMO-SAC purification and SUMO tag cleavage into one step. Finally, the purity of recombinant SAC reached as high as 95% and the yield was 25 mg/L. Our results demonstrated that recombinant SAC strongly inhibited proliferation and induced apoptosis in ovarian cancer cells SKOV-3. Immunofluorescence analysis and competitive binding reaction showed that recombinant SAC could specifically induce apoptosis of SKOV-3 cells through combination with cell surface receptor, GRP78. Therefore, we have developed an effective strategy for expressing bioactive SAC in prokaryotic cells, which supports the application of SAC in ovarian cancer therapy.  相似文献   

17.
根据已知的新型抗HIV-1蛋白GRFT基因氨基酸序列,推测其DNA编码序列,密码子优化及修饰后进行全基因化学合成,连接到原核表达载体pET28a(+)中,转化大肠杆菌BL21(DE3),IPTG诱导表达,获得目的蛋白. SDS-PAGE、Western Blot分析结果表明,目的蛋白得到良好表达并具有抗原活性;对表达条件进行优化,在最佳表达条件下,目的蛋白的表达量可占菌体总蛋白的55.84%;利用Ni2+-NTA柱亲和层析法进行目的蛋白的复性和纯化,凝胶成像系统扫描分析表明,纯度可达94.06%;运用Dot-ELISA法进行复性蛋白的抗原结合活性检测,结果显示,目的蛋白能够与HIV-1膜蛋白抗原特异性结合,初步证明所表达的重组蛋白具有良好的体外结合活性;基于制备的能够表达HIV-1 gp120基因的靶细胞模型,运用IFA法开展目的蛋白的细胞结合活性研究,结果显示,目的蛋白能够与靶细胞发生特异性反应,表明成功制备并获得了具有生物活性的新型抗HIV-1蛋白GRFT,为进一步研制新型抗HIV-1基因工程药物及其靶向治疗制剂奠定了坚实基础.  相似文献   

18.
The genes encoding purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase), and thymidine phosphorylase (TPase) from Escherichia coli K12 were cloned respectively into expression vector pET-11a or pET-28a. The recombinant plasmids were transformed into the host strain E. coli BL21(DE3) to construct four co-expression recombinant strains. Two of them had double recombinant plasmids (DUD and DAD) and the other two had tandem recombinant plasmid (TDU and TDA) in them. Under the repression of antibiotic, recombinant plasmids stably existed in host strains. Enzymes were abundantly expressed after induction with IPTG and large amount of target proteins were expressed in soluble form analyzed with SDS-PAGE. Compared with the host strain, enzyme activity of the recombinant strains had been notably improved. In the transglycosylation reaction, yield of 2,6-diaminopurine-2’-deoxyriboside (DAPdR) from 2,6-diaminopurine (DAP) and thymidine reached 40.2% and 51.8% catalyzed by DAD and TDA respectively; yield of 2,6-diaminopurine riboside (DAPR) from DAP and uridine reached 88.2% and 58.0% catalyzed by TDU and DUD respectively.  相似文献   

19.
BACKGROUND: Purification of polypeptides and proteins derived from recombinant DNA techniques and of long synthetic polypeptides often represents a challenge. Affinity methods exist, but generally require addition of a large recognition unit to the target protein and use of expensive purification media. Use of large units is dictated by the characteristics of non-covalent complexes, where the energy necessary to form the complex derives from the sum of multiple weak energy interactions. Covalent interactions in contrast are of high energy, even when only a few bonds are formed. We decided to explore the use of the reversible covalent bond formed between N-terminal cysteine and threonine residues with an aldehyde as a method of protein purification. RESULTS: A series of test peptides with N-terminal cysteine and threonine were captured by a polyethyleneglycol-polyacrylamide resin to which an aldehyde function had been grafted. Peptides with other amino acids at the N-terminus did not interact with the resin. A recombinant polypeptide with N-terminal cysteine was purified to 90% purity in one step. Polypeptides were eluted from the resin simply by adding a hydroxylamine derivative, which reacts with aldehyde functions to form an oxime. CONCLUSIONS: Polypeptides possessing N-terminal cysteine or threonine can be easily purified using this 'covalent capture' approach.  相似文献   

20.
Lu W  Sun Z  Tang Y  Chen J  Tang F  Zhang J  Liu JN 《Journal of chromatography. A》2011,1218(18):2553-2560
Purification tags are robust tools that can be used to purify a variety of target proteins. However, tag removal remains an expensive and significant issue that must be resolved. Based on the affinity and the trans-splicing activity between the two domains of Ssp DnaB split-intein, a novel approach for tag affinity purification of recombinant proteins with controllable tag removal by inducible auto-cleavage has been developed. This system provides a new affinity method and avoids premature splicing of the intein fused proteins expressed in host cells. The affinity matrix can be reused. In addition, this method is compatible with his-tag affinity purification technique. Our methods provide the insights for establishing a novel recombinant protein preparation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号