首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Four inorganic-organic hybrid materials that consist of 2-D layers of corner-sharing lead(II) iodide octahedra separated by alkylammonium chains have been crystallized and characterized via single-crystal XRD (SCXRD). The four hybrids, represented by the general formula [(C(n)H(2n+1)NH(3))(2)PbI(4)] and abbreviated C(n)PbI, exhibit multiple reversible phase transitions for a narrow temperature range. The transition temperatures were determined with differential scanning calorimetry experiments. The number of transitions and the transition temperatures are dependant on the chain length; for n = 7 and 10, there are three transitions, and for n = 8 and 9, there are two transitions. Regardless of the number of transitions, all four compounds have identical lowest temperature phases, which have inorganic layers that are eclipsed, non-planar conformations of the alkyl ammonium chains and yellow-coloured crystals. The next highest temperature phase for three of the compounds (C(10)PbI goes through an intermediate phase first), has staggered inorganic layers, all-trans planar conformations of the chains and orange coloured crystals. The highest temperature phase for n = 8 and 10 has red-coloured crystals and shows a disordering of the alkylammonium chains over two positions and staggered inorganic layers. The high temperature phase of C(7)PbI retains its orange colour and has only increased thermal motion of its alkylammonium chain. The structure of the high temperature phase of C(9)PbI was not determined. The SCXRD structures of the various phases give clues to the structural changes that the compounds undergo at the phase transitions, which will now enable future studies of their optical and electronic properties to be better understood.  相似文献   

2.
This review traces the development of thermal analysis over the last 50 years as it was experienced and contributed to by the author. The article touches upon the beginning of calorimetry and thermal analysis of polymers, the development of differential scanning calorimetry (DSC), single-run DSC, and other special instrumentations, up to the recent addition of modulation to calorimetry and superfast calorimetry. Many new words and phrases have been introduced to the field by the author and his students, leaving a trail of the varied interests over 50 years. It began with cold crystallization and more recently the terms oriented, intermediate phase, glass transitions of crystals, and decoupled chain segments were coined. In-between the following phenomena were named and studied: extended-chain crystals, irreversible thermodynamics of melting of polymer crystals, zero-entropy-production melting, dynamic differential thermal analysis (DDTA), the rule of constant increase of C p per mobile bead within a molecule at the glass transition temperature, superheating of polymer crystals, melting kinetics, crystallization during polymerization, chin-folding principle, molecular nucleation, rigid amorphous phase, system of classifying molecules, macroconformations, amorphous defects, rules for the entropy of fusion based on molecular shape and flexibility, single-molecule single-crystals, systems for classifying phases and mesophases including condis phases, and the globally metastable semicrystalline polymers with reversible, local subsystems. This review is update of a publication written in 1995 and published under the same title in the J. Thermal Anal., 46 (1996) 643. Parts F and G are fully new, and Part G is the basis for my lecture: ‘The development of the idea of thermodynamic decoupling in macromolecules’.  相似文献   

3.
超临界流体的共溶剂效应和混合流体研究进展   总被引:2,自引:0,他引:2  
共溶剂的出现极大地拓展了超临界流体的应用范围,推动了超临界流体科学与技术的发展。本文从相行为和分子间相互作用热力学的角度,对相行为测定、量热技术、光谱技术和分子模拟等在超临界流体中共溶剂效应的研究作了综述,主要介绍超临界流体中共溶剂的作用机理和混合流体在临界点附近热力学性质研究,并对其未来发展方向进行了展望。  相似文献   

4.
We discuss electron-transfer processes that govern the physics of several materials or systems of interest for advanced applications. The discussion touches upon several topics, ranging from solvatochromism to solvent-induced symmetry breaking, from excitonic to cooperative effects in molecular crystals, from phase transitions to vibrational contributions to the dielectric constant in organic materials, from spectroscopy to molecular transport. In all these diverse systems electron transfer (ET) plays a major role and is discussed with reference to simple models for delocalized charges.  相似文献   

5.
Mechano‐induced phase transitions in organic crystalline materials, which can alter their properties, have received much attention. However, most mechano‐responsive molecular crystals exhibit crystal‐to‐amorphous phase transitions, and the intermolecular interaction patterns in the daughter phase are difficult to characterize. We have investigated phenyl(phenylisocyanide)gold(I) ( 1 ) and phenyl(3,5‐dimethylphenylisocyanide)gold(I) ( 2 ) complexes, which exhibit a mechano‐triggered single‐crystal‐to‐single‐crystal phase transition. Previous reports of complexes 1 and 2 have focused on the relationships between the crystalline structures and photoluminescence properties; in this work we have focused on other aspects. The face index measurements of complexes 1 and 2 before and after the mechano‐induced phase transitions have indicated that they undergo non‐epitaxial phase transitions without a rigorous orientational relationship between the mother and daughter phases. Differential scanning calorimetry analyses revealed the phase transition of complex 1 to be enthalpically driven by the formation of new aurophilic interactions. In contrast, the phase transition of complex 2 was found to be entropically driven, with the closure of an empty void in the mother phase. Scanning electron microscopy observation showed that the degree of the charging effect of both complexes 1 and 2 was changed by the phase transitions, which suggests that the formation of the aurophilic interactions affords more effective conductive pathways. Moreover, flash‐photolysis time‐resolved microwave conductivity measurements revealed that complex 1 increased in conductivity after the phase change, whereas the conductivity of complex 2 decreased. These contrasting results were explained by the different patterns in the aurophilic interactions. Finally, an intriguing disappearing polymorphism of complex 2 has been reported, in which a polymorph form could not be obtained again after some period of time, even with repeated trials. The present studies provide us with a variety of hitherto unknown insights into mechano‐responsive molecular crystals, which help us to understand the phase transition behaviors upon mechanical stimulation and establish rational design principles.  相似文献   

6.
New measurements of the (N(CH3 )4 )2 MnBr4 specific heat by adiabatic calorimetry around the ferro- paraelastic phase transition shown by the crystal around 276 K are compared with previous calorimetric studies on similar tetramethylammonium bromide compounds. The thermodynamic behaviour of the tribromides and tetrabromides derivatives together with the influence on the phase transition parameters of the cation and halogen molecular substitutions are examined. The thermal relaxation experiments permit to study the behaviour of the crystals thermal conduction as a function of the temperature. Finally, the Landau theory for second order phase transitions is used to describe the thermodynamic behaviour of some of these crystals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
High-resolution calorimetric techniques have substantially contributed in characterising and understanding the delicate thermal behaviour near many phase transitions in liquid crystals. In this paper we describe a high-resolution adiabatic scanning calorimetric technique that has proven to be an important tool in discriminating between first-order and second-order phase transitions in addition to rendering high-resolution information on fluctuations-induced pretransitional specific heat capacity behaviour. The capabilities of adiabatic scanning calorimetry are illustrated with experimental results for the isotropic to nematic and the isotropic to smectic A transitions for a series of alkylcyanobiphenyl compounds. For the nematic to smectic A transition results are presented for pure compounds and mixtures of liquid crystals as well as on the effects of added non-mesogenic solutes and nanoparticles. For chiral molecules results for phase transitions involving blue phases and twist grain boundary phases are considered.  相似文献   

8.
Summary {\rtf1\ansi\ansicpg1250\deff0\deflang1038\deflangfe1038\deftab708{\fonttbl{\f0\froman\fprq2\fcharset238{\*\fname Times New Roman;}Times New Roman CE;}} \viewkind4\uc1\pard\f0\fs20 Principle and technical development of low temperature calorimetry are described. Typical experimental results obtained by our group at Osaka University over the four decades are given. These include phase transitions in equilibrium crystals and glass transitions in non-equilibrium frozen-in disordered solids including crystals. It can be concluded that the glass transitions observed exclusively in liquids so far are just one example of transitions that must be of wide occurrence in solids arising from freezing of relevant degrees of freedom. Interplay between the phase and glass transitions in crystals is discussed in relation to useful dopant that may accelerate some molecular motions that had failed to maintain equilibrium at low temperatures. \par }  相似文献   

9.
The molecular‐level motions of a coronene‐based supramolecular rotator are amplified into macroscopic changes of crystals by co‐assembly of coronene and TCNB (1,2,4,5‐tetracyanobenzene) into a charge‐transfer complex. The as‐prepared cocrystals show remarkable self‐healing behavior and thermo‐mechanical responses during thermally‐induced reversible single‐crystal‐to‐single‐crystal (SCSC) phase transitions. Comprehensive analysis of the microscopic observations as well as differential scanning calorimetry (DSC) measurements and crystal habits reveal that a thermally‐reduced‐rate‐dependent dynamic character exists in the phase transition. The crystallographic studies show that the global similarity of the packing patterns of both phases with local differences, such as molecular stacking sequence and orientations, should be the origin of the self‐healing behavior of these crystals.  相似文献   

10.
All phase transitions can be divided into enthalpy and entropy driven. The driving forces of phase transitions in aqueous soft matter systems can be resolved by applying scanning methods. In this review three experimental methods — sorption calorimetry, differential scanning calorimetry and humidity scanning quartz crystal microbalance with dissipation monitoring are described. Advantages and disadvantages of the methods are discussed. The driving forces of phase transitions can be directly measured using sorption calorimetry or calculated using van der Waals differential equation using experimental data obtained by other methods. The results of experimental studies show that in surfactant and lipid systems the phase transitions to phases with higher curvature are driven by enthalpy, while phase transitions to phases with lower curvature are driven by entropy.  相似文献   

11.
In recent years, liquid crystals (LCs) responding to light or electrical fields have gained significant importance as multifunctional materials. Herein, two new series of photoswitchable bent-core liquid crystals (BCLCs) derived from 4-cyanoresorcinol as the central core connected to an azobenzene based wing and a phenyl benzoate wing are reported. The self-assembly of these molecules was characterized by differential scanning calorimetry (DSC), polarizing light microscopy (POM), electro-optical, dielectric, second harmonic generation (SHG) studies, and XRD. Depending on the direction of the COO group in the phenyl benzoate wing, core-fluorination, temperature, and the terminal alkyl chain length, cybotactic nematic and lamellar (smectic) LC phases were observed. The coherence length of the ferroelectric fluctuations increases continuously with decreasing temperature and adopts antipolar correlation upon the condensation into superparaelectric states of the paraelectric smectic phases. Finally, long-range polar order develops at distinct phase transitions; first leading to polarization modulated and then to nonmodulated antiferroelectric smectic phases. Conglomerates of chiral domains were observed in the high permittivity ranges of the synclinic tilted paraelectric smectic phases of these achiral molecules, indicating mirror symmetry breaking. Fine-tuning of the molecular structure leads to photoresponsive bent-core (BC)LCs exhibiting a fast and reversible photoinduced change of the mode of the switching between ferroelectric- and antiferroelectric-like as well as a light-induced switching between an achiral and a spontaneous mirror-symmetry-broken LC phase.  相似文献   

12.
Crystal Engineering has traditionally dealt with molecular crystals. It is the understanding of intermolecular interactions in the context of crystal packing and in the utilization of such understanding in the design of new solids with desired physical and chemical properties. We outline here five areas which come under the umbrella of Crystal Engineering and where we feel that a proper planning of research efforts could lead to higher dividends for science together with greater returns for humankind. We touch on themes and domains where science funding and translation efforts could be directed in the current climate of a society that increasingly expects applications and utility products from science and technology. The five topics are: 1) pharmaceutical solids; 2) industrial solid state reactions; 3) mechanical properties with practical applications; 4) MOFs and COFs framework solids; 5) new materials for solar energy harvesting and advanced polymers.  相似文献   

13.
We focussed on the following two topics on block copolymers; (i) the Brazovskii effects, effects of thermal fluctuations on phase transition of systems having a short characteristic length L, and (ii) nanofabrication and nanohybrids based on block copolymer nanostructures. We highlight the following two aspects: Block copolymers provide good model systems for studies of basic physical science and are useful for advanced functional materials and devices.  相似文献   

14.
The last years have seen the development of differential calorimetry into a scanning technique for routine analysis. In order of ease of determination heats of fusion, heats of reaction, phase diagrams, purity analysis, heat capacity and similar heat effects are added to the list of quickly measurable quantities. Accuracies of the order of 1–5% of heats of fusion and heat capacity are obtainable under favorable conditions. Special topics which have been discussed are instrumentation, transition temperatures, heat capacities, glass transitions, heats of transitions, and phase diagrams.  相似文献   

15.
Recent progress in alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions has been reviewed by dividing the modulation methods into two types: phase transitions (order–disorder change) and change of liquid crystal directors (order–order change). First, photochemical phase transitions and alignment changes of liquid crystals in guest/host mixtures and polymers are summarized. Then, alignment control of liquid crystals by linearly polarized light and photoactive surface layers is discussed. Finally, recent applications of alignment change and photochemical phase transitions of liquid crystals in holographic technology and photomechanical effects are introduced. In addition, future possible applications for a variety of practical devices, such as display devices, optical switching and reversible optical image storage, are mentioned.  相似文献   

16.
The phase-separation phenomena observed in solutions of poly(2,6 dimethyl-1,4 phenylene oxide) in toluene have been investigated by differential scanning calorimetry. These measurements supplement the experimental evidence in favor of the concept that the phase transitions observed are crystallization and melting phenomena. The experiments suggest that two kinds of crystals can develop and that a seeded crystallization is possible.  相似文献   

17.
The formation of lyotropic mesophases (liquid crystals) in four binary systems n-alkyl glycosides/water was examined in dependence on surfactant concentration, temperature and the chain lengths (alkyl = heptyl, octyl, nonyl, decyl). The binary phase diagrams were established and the enthalpies of phase transitions were measured. The following phase transitions were detected by texture observation and calorimetry: hexagonal phase H, lamellar phase L, cubic phase Q, gel phase G and crystalline phase C. The positions of the corresponding regions of these phases in the phase diagram were determined. Sequence of phases and the localization of the phase regions were depended on the chain length of the alkyl group. So in the binary system n-decyl-β-D-glucoside/water the H-phase was not observed.  相似文献   

18.
In an effort to control the phase ranges of highly ordered smectic phases, we examined the impact of molecular symmetry on phase behaviour of a series of 12 symmetrical and unsymmetrical 4,4′-dialkanoyloxybiphenyl derivatives. Combined differential scanning calorimetry, polarised optical microscopy, and X-ray diffraction studies indicated that the compounds studied formed smectic F liquid crystals, and in some cases, G phases at lower temperatures. Although the clearing temperatures were largely unaffected by molecular symmetry, the transitions from the SmF liquid crystals to more ordered phases were consistently lowered upon reducing the molecular symmetry. As a result, unsymmetrical molecules had broader mesophases than their higher symmetry isomers, suggesting a strategy for tuning the phase behaviour of these highly ordered lamellar phases, which have been widely targeted for organic semiconductors.  相似文献   

19.
Thermal and electron diffraction studies of single crystals derived from the tetramer of p-acetoxybenzoic acid have revealed the presence of two consecutive crystallographic transformations, i.e., topotactic transitions. Thus, differential scanning calorimetry of the oligomer indicated two irreversible phase transitions, an endotherm followed by an exotherm, between 150 and 180°C, in addition to the crystal-to-nematic transition at 260°C. Electron diffraction analysis further elucidated the transformation occurring during thermal treatment of the original oligomer. Hence it could be shown that the solution-crystallized material (α form) underwent a solid–solid phase transition to the β modification at a temperature corresponding to the observed endotherm. This β form then converted to a more stable modification (β′ form) which represented a superlattice structure derived from the β modification.  相似文献   

20.
There have been several attempts to construct supramolecular chemical systems that mimic the phase transitions in living systems. However, most of these phase transitions are one-to-one and induced by one stimulus or chemical; there have been few reports on the pathway-dependent phase transition of supramolecular self-assemblies in multi-step. To induce multistep phase transitions, molecular crystals were prepared that contained a cationic amphiphile bearing azobenzene and disulfide groups. A reducing agent caused the crystals to become vesicles, and adjacent, non-touching vesicles fused under UV and subsequent visible light. Adding a reducing agent to the worm-like aggregates that were generated after UV irradiation of the original crystals resulted in the growth of sheet-like aggregates. 1H NMR and fluorescence anisotropy measurements showed that a series of phase transitions was induced by changes in the phase structures from molecular conversions of the reactive amphiphiles. The multiple pathway-dependent phase transitions of supramolecular self-assemblies can provide a methodology for developing new stimuli-responsive materials that exhibit the desirable properties under specific circumstances from a systems chemistry viewpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号