首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Chemiluminescence (CL) has been applied to evaluate the oxidation susceptibility of various polyolefins: low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE) and isotactic polypropylene (i-PP). The intensity of CL emission in inert atmosphere could be related to the previous oxidation level. The thermal stability at 170 °C of the hydroperoxides in LDPE seems to be lower than that in LLDPE or HDPE. The kinetic parameters of the oxidation at 170 °C in oxygen, calculated from CL data, suggest the following stability order: HDPE > LLDPE > LDPEi-PP. The intensity of CL emission was related to the CH3 content as evaluated by Fourier transform infra-red spectroscopy.  相似文献   

2.
木工作用透射电子显微术及电子衍射技术研究3种PE(HDPE,LLDPE或LDPE)均聚物高取向薄膜的微结构。定量测定了它们的结晶尺寸。通过倾斜样品电子显微学研究确定了不同种PE纤维结构的对称性。  相似文献   

3.
Utilization of oils/waxes obtained from thermal cracking of individual LDPE (low density polyethylene), HDPE (high density polyethylene), LLDPE (linear low density polyethylene), PP (polypropylene), or cracking of mixed polymers PP/LDPE (1: 1 mass ratio), HDPE/LDPE/PP (1: 1: 1 mass ratio), HDPE/LDPE/LLDPE/PP (1: 1: 1: 1 mass ratio) for the production of automotive gasolines and diesel fuels is overviewed. Thermal cracking was carried out in a batch reactor at 450°C in the presence of nitrogen. The principal process products, gaseous and liquid hydrocarbon fractions, are similar to the refinery cracking products. Liquid cracking products are unstable due to the olefins content and their chemical composition and their properties strongly depend on the feed composition. Naphtha and diesel fractions were hydrogenated over a Pd/C catalyst. Bromine numbers of hydrogenated fractions decreased to values from 0.02 g to 6.9 g of Br2 per 100 g of the sample. Research octane numbers (RON) before the hydrogenation of naphtha fractions were in the range from 80.5 to 93.4. After the hydrogenation of naphtha fractions, RON decreased to values from 61.0 to 93.6. Diesel indexes (DI) for diesel fractions were in the range from 73.7 to 75.6. After the hydrogenation of diesel fractions, DI increased up to 104.9.  相似文献   

4.
High density polyethylene (HDPE), low density polyethylene (LDPE) and polypropylene (PP) coupons were immersed for a period of 6 months in Bay of Bengal near Chennai Port (Port) and Fisheries Survey of India (FSI). Samples were retrieved every month and the extent of biofouling and biodegradation were monitored by measuring biological and physicochemical parameters. Dissolved oxygen and oxidation reduction potential were higher at Port than at FSI. Total suspended solids and organic matter were more on PP, followed by HDPE and LDPE indicating hydrophobic surfaces favour more biofouling. Pseudomonas sp., anaerobic, heterotrophic and iron-reducing bacteria were observed on polymer surface. Biofouling was found to depend on the season, loading being highest in the month of August. Chlorophyll was higher at FSI than at Port due to higher pollution levels and also being closer to the shores. Maximum weight loss was seen in LDPE (1.5-2.5%), followed by that in HDPE (0.5-0.8%) and finally in PP (0.5-0.6%) samples deployed at Port in the six month time period.  相似文献   

5.
Adhesive effect of linear low density polyethylene (LLDPE) gels in organic solvents such as decalin, tetralin, and o-dichlorobenzene on high density polyethylene (HDPE) moldings has been investigated by shearing tests, and DSC measurements. For all of the gels the temperature at which the heated gel starts to exhibit the adhesive effect was about 70 °C, which is similar to the result of LDPE gel. In particular, when heated at 110 °C, LLDPE gel in tetralin showed such a strong bond strength that polyethylene plates of 3 mm in thickness and 20 mm in width gave rise to necking. It was found that LLDPE gel behaved as though it added LDPE gel to HDPE gel namely LDPE-like components in LLDPE resin exerted the adhesive effect at lower heating temperature, HDPE-like components exerted the strong adhesive effect at higher heating temperature.  相似文献   

6.
Blown films of different types of polyethylenes, such as branched low‐density polyethylene (LDPE) and linear high‐density polyethylene (HDPE), are well known to tear easily along particular directions: along the film bubble's transverse direction for LDPE and along the machine direction (MD) for HDPE. Depending on the resin characteristics and processing conditions, different structures can form within the film; it is therefore difficult to separate the effects of the crystal structure and orientation on the film tear behavior from the effects of the macromolecular architecture, such as the molecular weight distribution and long‐chain branching. Here we examine LDPE, HDPE, and linear low‐density polyethylene (LLDPE) blown films with similar crystal orientations, as verified by through‐film X‐ray scattering measurements. With these common orientations, LDPE and HDPE films still follow the usual preferred tear directions, whereas LLDPE tears isotropically despite an oriented crystal structure. These differences are attributed to the number densities of the tie molecules, especially along MD, which are considerably greater for linear‐architecture polymers with a substantial fraction of long chains, capable of significant extension in flow. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 413–420, 2005  相似文献   

7.
High density polyethylene (HDPE), linear low density polyethylene (LLDPE), and isotactic polypropylene (PP) containing antioxidant additives at low or zero levels were extruded and blown moulded as films. An HDPE/LLDPE commercial blend containing a pro-oxidant additive (i.e., an oxo-biodegradable blend) was taken from the market as supermarket bag. These four polyolefin samples were exposed to natural weathering for one year during which their structure and thermal and mechanical properties were monitored. This study shows that the real durability of olefin polymers may be much shorter than centuries, as in less than one year the mechanical properties of all samples decreased virtually to zero, as a consequence of severe oxidative degradation, that resulted in substantial reduction in molar mass accompanied by a significant increase in content of carbonyl groups. PP and the oxo-bio HDPE/LLDPE blend degraded very rapidly, whereas HDPE and LLDPE degraded more slowly, but significantly in a few months. The main factors influencing the degradability were the frequency of tertiary carbon atoms in the chain and the presence of a pro-oxidant additive. The primary (sterically hindered phenol) and secondary (phosphite) antioxidant additives added to PP slowed but did not prevent rapid photo-oxidative degradation, and in HDPE and LLDPE the secondary antioxidant additive had little influence on the rate of abiotic degradation at the concentrations used here.  相似文献   

8.
Extensive thermal and relaxational behavior in the blends of linear low-density polyethylene (LLDPE) (1-octene comonomer) with low-density polyethylene (LDPE) and high-density polyethylene (HDPE) have been investigated to elucidate miscibility and molecular relaxations in the crystalline and amorphous phases by using a differential scanning calorimeter (DSC) and a dynamic mechanical thermal analyzer (DMTA). In the LLDPE/LDPE blends, two distinct endotherms during melting and crystallization by DSC were observed supporting the belief that LLDPE and LDPE exclude one another during crystallization. However, the dynamic mechanical β and γ relaxations of the blends indicate that the two constituents are miscible in the amorphous phase, while LLDPE dominates α relaxation. In the LLDPE/HDPE system, there was a single composition-dependent peak during melting and crystallization, and the heat of fusion varied linearly with composition supporting the incorporation of HDPE into the LLDPE crystals. The dynamic mechanical α, β, and γ relaxations of the blends display an intermediate behavior that indicates miscibility in both the crystalline and amorphous phases. In the LDPE/HDPE blend, the melting or crystallization peaks of LDPE were strongly influenced by HDPE. The behavior of the α relaxation was dominated by HDPE, while those of β and γ relaxations were intermediate of the constituents, which were similar to those of the LLDPE/HDPE blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1633–1642, 1997  相似文献   

9.
聚苯乙烯/聚乙烯的反应性挤出共混   总被引:5,自引:0,他引:5  
俞强  林明德 《应用化学》1999,16(3):53-0
多官能团单体;聚苯乙烯/聚乙烯的反应性挤出共混  相似文献   

10.
Accelerated thermal and photo-aging of four homopolymers, low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and high-impact polystyrene (HIPS), was performed and the impact of subsequent reprocessing conditions on their properties studied. Polymer samples oven-aged at 100 °C for varying periods of time or UV irradiated in a Weather-o-meter (WOM) at λ = 340 nm were reprocessed in a Brabender plasticorder at 190 °C/60 rpm for 10 min. Chemical changes and the evolution of rheological and mechanical properties accompanying the gradual degradation of the individual polymers were monitored and evaluated (DSC, FTIR, colorimetric method, MFI, tensile impact strength). LDPE and HIPS were found to be more susceptible to thermo-oxidation than HDPE and PP, whereas HDPE and PP were affected to a greater extent by UV exposure; the crucial role here is being played by the stabilization of the studied resins. In HDPE the scission and crosslinking reactions competed both in thermo-and photo-degradation. In the case of LDPE, scission prevailed over branching during thermo-oxidation, whereas photo-oxidation of the same sample led predominantly to crosslinking. Abrupt deterioration of the LDPE rheological properties after one week of thermal exposure was suppressed by re-stabilization. The scission reaction was also predominant for PP during thermo-oxidation, and it took place even faster during UV exposure. In the case of HIPS a slight photo-degradation of PS matrix is accompanied by simultaneous crosslinking of the polybutadiene component.  相似文献   

11.
Polymer morphology (phase size and phase density) of slow cooled and quenched polyethylene (HDPE, LDPE, and LLDPE) has been characterized over a range of temperatures. The characterization methodology includes variable-temperature density gradient column (VT-DGC), small-angle x-ray scattering (SAXS), wide-angle x-ray diffraction (WAXD) and differential scanning calorimetry (DSC). Using a novel technique, a VT-DGC was prepared and cycled over a range of service temperatures (20-60 °C) for 5 cycles to investigate the changes of slow cooled and quenched HDPE, LDPE and LLDPE. A significant change in bulk density was present in each sample between the first cycle and subsequent cycles. Morphological analysis was performed using both the two-phase and three-phase models. The two-phase model showed that, for a particular sample, the thickness of the crystalline and amorphous phases varied very little within the experimental temperature range. Using the three-phase model, differences in the interfacial layer thickness were measured and observed to be significant compared to the amorphous and crystalline phase changes. The amorphous and crystalline densities of all samples varied less than 2%. Overall, significant difference in crystalline density was observed between HDPE, LDPE and LLDPE due to molecular structure.  相似文献   

12.
Metallocene and Ziegler-Natta (ZN) linear low density polyethylenes (LLDPEs) of different branch types and contents as well as linear high density polyethylene (HDPE) were exposed to natural and accelerated weather conditions. The degree of UV degradation of exposed samples was measured by rheological techniques and results were compared with unexposed polymers. Dynamic shear measurements were performed in an ARES rheometer in the linear viscoelastic range. The degree of enhancement or reduction in viscosity and elasticity was used as a measure of the degree of cross-linking or chain scission, respectively. The degradation results of LLDPE suggest that both cross-linking and chain scission are taking place. Chain scission dominated the degradation at high levels of short chain branching (SCB) and long exposure times. The degradation mechanism of m-LLDPE and ZN-LLDPE is similar; however, m-LLDPE showed a higher degradation rate than ZN-LLDPE of similar Mw and average SCB. ZN-LLDPE was found to be more stable than a similar m-LLDPE. Comonomer type had little influence on degradation. Dynamic shear rheology was very useful in revealing the influence of different molecular parameters and it exposed the degradation mechanism.  相似文献   

13.
A study has been made of the effect of orientation on the oxidative degradation of poly(vinylchloride) (PVC), low density polyethylene (LDPE) and high density polyethylene (HDPE) under the influence of γ- and u.v.-radiation. The effect of drawing in PVC is to increase the rate of oxidative degradation; in LDPE and HDPE, this rate decreases (especially for HDPE) both under u.v. and γ-radiation.  相似文献   

14.
Structural changes induced by Ar plasma discharge in low and high density polyethylene (LDPE and HDPE) were studied by different techniques. AFM and SEM methods were used to determine surface morphology, the changes in chemical structure were followed using FTIR and UV-vis spectroscopy. The content and the depth profile of incorporated oxygen was determined by RBS method. The degree of polymer ablation was determined gravimetrically. Standard goniometry was used to determine contact angle and to follow aging of plasma modified polymer. As a result of plasma treatment a lamellar structure or spherulites appear on the surface of HDPE and LDPE, respectively. Pronounced increase of the surface roughness is observed on HDPE contrary to LDPE. Plasma treatment for 400 s leads to the ablation of the surface layer of about 0.6 and 1 μm thick for LDPE and HDPE, respectively. Plasma treatment results in oxidation of the polymer surface layer which is more pronounced in HDPE. Concentration maximum of incorporated oxygen lies 25 nm beneath the sample surface in both polymer types. After exposure to plasma discharge carbonyl, carboxyl and amide groups were detected in the polymer surface layer together with CC bonds either in aromatic or in aliphatic structures. Immediately after the plasma treatment strong decline of the contact angle is observed, the decline being larger in HDPE. Later, in aged specimens the contact angle increases rapidly. The increase, which may be due to rearrangement of degraded structures, is stronger in the specimens exposed to plasma for longer times.  相似文献   

15.
The morphologies of films blown from a low‐density polyethylene (LDPE), a linear low‐density polyethylene (LLDPE), and their blend have been characterized and compared using transmission electron microscopy, small‐angle X‐ray scattering, infrared dichroism, and thermal shrinkage techniques. The blending has a significant effect on film morphology. Under similar processing conditions, the LLDPE film has a relatively random crystal orientation. The film made from the LDPE/LLDPE blend possesses the highest degree of crystal orientation. However, the LDPE film has the greatest amorphous phase orientation. A mechanism is proposed to account for this unusual phenomenon. Cocrystallization between LDPE and LLDPE occurs in the blowing process of the LDPE and LLDPE blend. The structure–property relationship is also discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 507–518, 2002; DOI 10.1002/polb.10115  相似文献   

16.
Various polyethylenes (PEs) and the effects of high-energy radiation on their structures were widely studied in the past using conventional Differential Scanning Calorimetry (DSC) measurements. In this work, we used the Temperature Modulated Differential Scanning Calorimetry (TMDSC) technique in order to obtain more information about the influence of the initial structural differences and gamma radiation on the evolution in structure and thermal properties of different polyethylenes. For this reason, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) samples were exposed to gamma radiation, in air, to a wide range of absorbed doses (up to 2400 kGy). The separation of the total heat flow TMDSC signal into a reversing and non-reversing part enabled us to observe the low-temperature enthalpy relaxation (related to the existence of the “rigid amorphous phase”) and recrystallisation processes, as well as to follow their radiation-induced evolution and/or that of melting in a more revealing manner compared to the case of the conventional DSC. Consequently, our results indicate that TMDSC could improve the understanding of radiation-induced effects in polymers.  相似文献   

17.
Melting and crystallization phenomena in blends of a linear low-density polyethylene (LLDPE) (ethylene butene-1 copolymer) with a conventional low-density (branched) polyethylene (LDPE) are explored with emphasis on composition by differential scanning calorimetry (DSC) and light scattering (LS). Two endotherms are evident in the DSC studies of the blends, which suggests the formation of separate crystals. Light-scattering studies indicate that the blend system is predominantly volume filled by the LLDPE component whereby the LDPE component crystallizes as a secondary process within the domain of the LLDPE spherulites. In contrast to those of the LLDPE/HDPE blends, the mechanical and optical relaxation behavior of the LLDPE/LDPE blends are dominated by the LLDPE component in the vicinities of γ and β regions, whereas the trend reverses at high temperature α regions. This observation is accounted for on the basis of the relative restrictions imposed by the deformation of spherulites (which are primarily made up of the LLDPE component) at different time scales.  相似文献   

18.
极低密度聚乙烯与其它聚乙烯的共混   总被引:3,自引:0,他引:3  
从结构角度,用DSC,WAXD,SAXS研究了聚乙烯(PE)家族中极低密度聚乙烯(VLDPE)与其它PE的互容性.HDPE/VLDPE是共晶互容的,以其大量无规部分“溶解”了HDPE的结晶缺陷部分,提高了HDPE的Tc,Tm,Xc,结晶峰半高宽变窄,晶胞参数随组成而有最低值.VLDPE与LLDPE结构极为相似,DSC及WAXD证明其共混物是共晶相容体系.LDPE/VLDPE的结晶度符合按组成的计算值,但晶胞参数a,b以及晶粒尺寸增大,DSC上有分别相应于两组份的两个Tm;VLDPE的Tc,Tm峰高之和高于按组份的计算值,LDPE的Tm,Tc则低于计算值.认为是正如LLDPE/LDPE,LDPE向充满整个体积的VLDPE中不断填入,以VLDPE为晶核而结晶,形成相分离的不相容体系.  相似文献   

19.
In this communication, by means of stress relaxation experiments, the viscous stress at various strains during tensile deformation of oriented polyolefin samples including high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and isotactic polypropylene (iPP), has been determined. The viscous stress in the oriented samples takes up to 50%-70% of the total stress, which is unusually high compared with their isotropic counterparts. The unusual high viscous stress was discussed based on mainly the existence of shish structure in oriented polyolefins, which could enhance the inter-lamella coupling significantly.  相似文献   

20.
Commercial copolymers of 1‐octene and ethylene: metallocene catalyzed (mLLDPE) and Ziegler‐Natta catalyzed (znLLDPE), a low density polyethylene (LDPE), and high density polyethylene (HDPE), were characterized with respect to branching, crystallization behaviour and dynamic‐mechanical properties. It was found that the crystallinity of the polymers is more influenced by the homogeneity of the short‐chain branching than by its content. The study of blends of mLLDPE and znLLDPE with LDPE and HDPE showed that the interaction between mLLDPE and LDPE is stronger than between znLLDPE and LDPE. Blends containing mLLDPE showed a composition depending improvement of the storage modulus G' which was not observed in znLLDPE/LDPE blends. The HPDE blends followed a linear mixing rule. Co‐crystallization was found mLLDPE/LDPE and partially in znLLDPE/LDPE and znLLDPE/HDPE blends, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号