首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
The reactions of the binuclear oxomolybdenum(V) complex [Cl(2)(O)Mo(&mgr;-OEt)(2)(&mgr;-HOEt)Mo(O)Cl(2)] (1) with Me(3)Si(allyl) and SbF(3) produce the compounds [Mo(6)O(6)Cl(6)(&mgr;(3)-O)(2)(&mgr;(2)-OEt)(6)(&mgr;(2)-Cl)(2)] (2) and [Mo(8)O(8)Cl(6)(&mgr;(3)-O)(4)(OH)(2)(&mgr;(2)-OH)(4)(&mgr;(2)-OEt)(4)(HOEt)(4)] (3), respectively. Treatment of 1 with the Lewis base PMe(3) affords the tetrameric complex [Mo(4)O(4)Cl(4)(&mgr;(2)-OEt)(4)(HOEt)(2)(&mgr;(3)-O)(2)] (4), which represents another link in the chain of clusters produced by the reactions of 1 and simulating the build-up of polymeric molybdenum oxides by sol-gel methods. The crystal structure of 4 has been determined [C(12)H(32)Cl(4)Mo(4)O(12), triclinic, P&onemacr;, a = 7.376(2) ?, b = 8.807(3) ?, c = 11.467(4) ?, alpha = 109.61(1) degrees, beta = 92.12(3) degrees, gamma = 103.75(2) degrees, Z = 1]. By contrast, reaction of 1 with the nitrogen base NEt(3), followed by treatment with [PPN]Cl.2H(2)O ([PPN](+) = [Ph(3)P=N=PPh(3)](+)), gives the complex [PPN](+)[Et(3)NH](+)[Cl(2)(O)Mo(&mgr;(2)-O)(2)Mo(O)Cl(2)](2)(-) (6) in 90% yield. Its crystal structure [C(36)H(30)Cl(4)MoNOP(2), triclinic, Pna2(1), a = 21.470(6) ?, b = 16.765(2) ?, c = 9.6155(14) ?, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, Z = 16] includes the anion [Cl(2)(O)Mo(&mgr;(2)-O)(2)Mo(O)Cl(2)](2)(-), which is a charged derivative of the species forming the gels in sol-gel processes starting from chloromolybdenum ethoxides. Furthermore, compound 1 is found to be catalytically active in esterification and dehydration reactions of alcohols.  相似文献   

2.
Reduction of TiCl(4) with 1 equiv of HSnBu(3) followed by addition of [PPh(4)]Cl and then PR(3) leads to two new dinuclear titanium(III) compounds, [PPh(4)][Ti(2)(&mgr;-Cl)(3)Cl(4)(PR(3))(2)] (R = Et and R(3) = Me(2)Ph), both of which contain an anion with the face-sharing bioctahedral type structure. Their crystal structures are reported. [PPh(4)][Ti(2)(&mgr;-Cl)(3)Cl(4)(PEt(3))(2)].2CH(2)Cl(2) crystallized in the triclinic space group P&onemacr;. Cell dimensions: a = 12.461(1) ?, b = 20.301(8) ?, c = 11.507(5) ?, alpha = 91.44 degrees, beta = 113.27(1) degrees, gamma = 104.27(2) degrees, and Z = 2. The distance between titanium atoms is 3.031(2) ?. [PPh(4)][Ti(2)(&mgr;-Cl)(3)Cl(4)(PMe(2)Ph)(2)].CH(2)Cl(2) also crystallized in the triclinic space group P&onemacr; with cell dimensitions a = 11.635(4) ?, b = 19.544(3) ?, c = 11.480(3) ?, alpha = 100.69(2) degrees, beta = 109.70(1) degrees, gamma = 95.08(2) degrees, and Z = 2. The distance between titanium atoms in this compound is 2.942(1) ?. Variable temperature magnetic susceptibilities were measured for [PPh(4)][Ti(2)(&mgr;-Cl)(3)Cl(4)(PEt(3))(2)]. Electronic structure calculations were carried out for a model ion, [Ti(2)(&mgr;-Cl)(3)Cl(4)(PH(3))(2)](-), and another well-known anion, [Ti(2)(&mgr;-Cl)(3)Cl(6)](3)(-), by employing an ab initio configuration interaction method. The results of the calculations reveal that the metal-metal interaction in these Ti(III) face-sharing compounds can be best described by strong antiferromagnetic coulping that leads to a singlet ground state and a thermally accessible triplet first excited state. Accordingly the measured magnetic data were satisfactorily fitted to a spin-only formula.  相似文献   

3.
31P CP/MAS NMR spectroscopy is examined as a method of characterization for ruthenium(II) phosphine complexes in the solid state, and the results are compared with X-ray crystallographic data determined for RuCl(2)(dppb)(PPh(3)) (dppb = Ph(2)P(CH(2))(4)PPh(2)), RuBr(2)(PPh(3))(3), and the previously determined RuCl(2)(PPh(3))(3). Crystals of RuBr(2)(PPh(3))(3) (C(54)H(45)Br(2)P(3)Ru) are monoclinic, space group P2(1)/a, with a = 12.482(4) ?, b = 20.206(6) ?, c = 17.956(3) ?, beta = 90.40(2) degrees, and Z = 4, and those of RuCl(2)(dppb)(PPh(3)) (C(46)H(43)Cl(2)P(3)Ru) are also monoclinic, space group P2(1)/n, with a = 10.885(2) ?, b = 20.477(1) ?, c = 18.292(2) ?, beta = 99.979(9) degrees, and Z = 4. The structure of RuBr(2)(PPh(3))(3) was solved by direct methods, and that of RuCl(2)(dppb)(PPh(3)) was solved by the Patterson method. The structures were refined by full-matrix least-squares procedures to R = 0.048 and 0.031 (R(w) = 0.046 and 0.032) for 5069 and 5925 reflections with I >/= 3sigma(I), respectively. Synthetic routes to RuBr(2)(dppb)(PPh(3)) and [RuBr(dppb)](2)(&mgr;(2)-dppb) are reported. The reactivity of RuCl(2)(dppb)(PPh(3)) with the neutral two-electron donor ligands (L) dimethyl sulfoxide, tetramethylene sulfoxide, tetrahydrothiophene, and dimethyl sulfide to give [(L)(dppb)Ru(&mgr;-Cl)(3)RuCl(dppb)] is discussed.  相似文献   

4.
Reaction of LRu(III)Cl(3) (L = 1,4,7-trimethyl-1,4,7-triazacyclononane) with 1,2-phenylenediamine (opdaH(2)) in H(2)O in the presence of air affords [LRu(II)(bqdi)(OH(2))](PF(6)) (1), where (bqdi) represents the neutral ligand o-benzoquinone diimine. From an alkaline methanol/water mixture of 1 was obtained the dinuclear species [{LRu(II)(bqdi)}(2)(&mgr;-H(3)O(2))](PF(6))(3) (1a). The coordinated water molecule in 1 is labile and can be readily substituted under appropriate reaction conditions by acetonitrile, yielding [LRu(II)(bqdi)(CH(3)CN)](PF(6))(2) (2), and by iodide and azide anions, affording [LRu(II)(bqdi)I](PF(6)).0.5H(2)O (3) and [LRu(bqdi)(N(3))](PF(6)).H(2)O (4), respectively. Heating of solid 4 in vacuum at 160 degrees C generates N(2) and the dinuclear, nitrido-bridged complex [{LRu(o-C(6)H(4)(NH)(2))}(2)(&mgr;-N)](PF(6))(2) (5). Complex 5 is a mixed-valent, paramagnetic species containing one unpaired electron per dinuclear unit whereas complexes 1-4 are diamagnetic. The crystal structures of 1, 1a.3CH(3)CN, 3, 4.H(2)O, and 5.3CH(3)CN.0.5(toluene) have been determined by X-ray crystallography: 1 crystallizes in the monoclinic space group P2(1)/m, Z = 2, with a = 8.412(2) ?, b = 15.562(3) ?, c = 10.025 ?, and beta = 109.89(2) degrees; 1a.3CH(3)CN, in the monoclinic space group C2/c, Z = 4, with a = 19.858(3) ?, b = 15.483(2) ?, c = 18.192(3) ?, and beta = 95.95(2) degrees; 3, in the orthorhombic space group Pnma, Z = 4, with a = 18.399(4) ?, b = 9.287(2) ?, and c = 12.052(2) ?, 4.H(2)O, in the monoclinic space group P2(1)/c, Z = 4, with a = 8.586(1) ?, b = 15.617(3) ?, c = 16.388(5) ?, and beta = 90.84(2) degrees; and 5.3CH(3)CN.0.5(toluene), in the monoclinic space group P2(1)/c, Z = 4, with a = 15.003(3) ?, b = 16.253(3) ?, c = 21.196(4) ?, and beta = 96.78(3) degrees. The structural data indicate that in complexes 1-4 the neutral o-benzoquinone diimine ligand prevails. In contrast, in 5 this ligand has predominantly o-phenylenediamide character, which would render 5 formally a mixed-valent Ru(IV)Ru(V) species. On the other hand, the Ru-N bond lengths of the Ru-N-Ru moiety at 1.805(5) and 1.767(5) ? are significantly longer than those in other crystallographically characterized Ru(IV)=N=Ru(IV) units (1.72-1.74 ?). It appears that the C(6)H(4)(NH)(2) ligand in 5 is noninnocent and that formal oxidation state assignments to the ligands or metal centers are not possible.  相似文献   

5.
The synthesis and physical characterization of oxo-bridged [Cr(2)(tmpa)(2)(&mgr;-O)(X)](n)()(+) complexes (tmpa = tris(2-pyridylmethyl)amine) containing a variety of complementary ligands (X = CO(3)(2)(-), PhPO(4)(2)(-), HS(-)) are described, with the objective of understanding factors underlying variations in the antiferromagnetic coupling constant J. We also present the crystal structure of [(tmpa)Cr(&mgr;-O)(&mgr;-CO(3))Cr(tmpa)](ClO(4))(2).2H(2)O, for comparison with previous findings on [(tmpa)Cr(&mgr;-O)(&mgr;-CH(3)CO(2))Cr(tmpa)](ClO(4))(3). The carbonate-bridged complex crystallizes in the monoclinic space group P2(1)/c with a = 11.286(10) ?, b = 18.12(2) ?, c = 20.592(12) ?, beta = 95.99(5) degrees, and V = 4190 ?(3) and Z = 4. Asymmetric tmpa ligation pertains, with apical N atoms situated trans to bridging oxo and acido O atoms. Key structural parameters include Cr-O(b) bond lengths of 1.818(6) and 1.838(6) ?, Cr-OCO(2) distances of 1.924(7) and 1.934(7) ?, and a bridging bond angle of 128.3(3) degrees. Several attempts to prepare oxo, amido-bridged dimers were unsuccessful, but the nearlinear [Cr(tmpa)(N(CN)(2))](2)O(ClO(4))(2).3H(2)O complex was isolated from the reaction of dicyanamide ion with [Cr(tmpa)(OH)](2)(4+). In contrast to the behavior of analogous diiron(III) complexes, antiferromagnetic coupling constants of [Cr(2)(tmpa)(2)(&mgr;-O)(X)](n)()(+) dinuclear species are highly responsive to the X group. Considering the complexes with X = CO(3)(2)(-), PhPO(4)(2)(-), HS(-), SO(4)(2)(-), and RCO(2)(-) (10 R substituents), we find a reasonably linear, empirical relationship between J and oxo bridge basicity, as measured by pK(a) (Cr(OH)Cr) values in aqueous solution. While there is no theoretical basis for such a correlation between solid-state and solution-phase properties, this relationship demonstrates that CrOCr pi-bonding contributes significantly to antiferromagnetic exchange. Thus, J tends to become less negative with increasing &mgr;-O(2)(-) basicity, showing that greater availability of a bridging oxo group lone pair toward the proton, with decreasing CrOCr pi-interaction, reduces the singlet-triplet gap.  相似文献   

6.
Oxidative addition of diorganyl diselenides to the coordinatively unsaturated, low-valent transition-metal-carbonyl fragment [Mn(CO)(5)](-) produced cis-[Mn(CO)(4)(SeR)(2)](-). The complex cis-[PPN][Mn(CO)(4)(SePh)(2)] crystallized in triclinic space group P&onemacr; with a = 10.892(8) ?, b = 10.992(7) ?, c = 27.021(4) ?, alpha = 101.93(4) degrees, beta = 89.79(5) degrees, gamma = 116.94(5) degrees, V = 2807(3) ?(3), and Z = 2; final R = 0.085 and R(w) = 0.094. Thermolytic transformation of cis-[Mn(CO)(4)(SeMe)(2)](-) to [(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)](-) was accomplished in high yield in THF at room temperature. Crystal data for [Na-18-crown-6-ether][(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)]: trigonal space group R&thremacr;, a = 13.533(3) ?, c = 32.292(8) ?, V = 5122(2) ?(3), Z = 6, R = 0.042, R(w) = 0.041. Oxidation of Co(2+) to Co(3+) by diphenyl diselenide in the presence of chelating metallo ligands cis-[Mn(CO)(4)(SePh)(2)](-) and cis-[Mn(CO)(4)(TePh)(2)](-), followed by a bezenselenolate ligand rearranging to bridge two metals and a labile carbonyl shift from Mn to Co, led directly to [(CO)(4)Mn(&mgr;-TePh)(2)Co(CO)(&mgr;-SePh)(3)Mn(CO)(3)]. Crystal data: triclinic space group P&onemacr;, a = 11.712(3) ?, b = 12.197(3) ?, c = 15.754(3) ?, alpha = 83.56(2) degrees, beta = 76.13(2) degrees, gamma = 72.69(2) degrees, V = 2083.8(7) ?(3), Z = 2, R = 0.040, R(w) = 0.040. Addition of fac-[Fe(CO)(3)(SePh)(3)](-) to fac-[Mn(CO)(3)(CH(3)CN)(3)](+) resulted in formation of (CO)(3)Mn(&mgr;-SePh)(3)Fe(CO)(3). This neutral heterometallic complex crystallized in monoclinic space group P2(1)/n with a = 8.707(2) ?, b = 17.413(4) ?, c = 17.541(4) ?, beta = 99.72(2) degrees, V = 2621(1) ?(3), and Z = 4; final R = 0.033 and R(w) = 0.030.  相似文献   

7.
Wu W  Fanwick PE  Walton RA 《Inorganic chemistry》1996,35(19):5484-5491
The reactions of the unsymmetrical, coordinatively unsaturated dirhenium(II) complexes [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)]Y (XylNC = 2,6-dimethylphenyl isocyanide; Y = O(3)SCF(3) (3a), PF(6) (3b)) with XylNC afford at least three isomeric forms of the complex cation [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](+). Two forms have very similar bis(&mgr;-halo)-bridged edge-sharing bioctahedral structures of the type [(CO)BrRe(&mgr;-Br)(2)(&mgr;-dppm)(2)Re(CNXyl)(2)]Y (Y = O(3)SCF(3) (4a/4a'), PF(6) (4b/4b')), while the third is an open bioctahedron [(XylNC)(2)BrRe(&mgr;-dppm)(2)ReBr(2)(CO)]Y (Y = O(3)SCF(3) (5a), PF(6) (5b)). While the analogous chloro complex cation [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](+) was previously shown to exist in three isomeric forms, only one of these has been found to be structurally similar to the bromo complexes (i.e. the isomer analogous to 5a and 5b). The reaction of 3a with CO gives the salt [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(2)(CNXyl)]O(3)SCF(3) (7), in which the edge-sharing bioctahedral cation [(XylNC)BrRe(&mgr;-Br)(&mgr;-CO)(&mgr;-dppm)(2)ReBr(CO)](+) has an all-cis arrangement of pi-acceptor ligands. The Re-Re distances in the structures of 4b', 5a, and 7 are 3.0456(8), 2.3792(7), and 2.5853(13) ?, respectively, and accord with formal Re-Re bond orders of 1, 3, and 2, respectively. Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](PF(6))(0.78)(ReO(4))(0.22).CH(2)Cl(2) (4b') at 295 K: monoclinic space group P2(1)/n (No. 14) with a = 19.845(4) ?, b = 16.945(5) ?, c = 21.759(3) ?, beta = 105.856(13) degrees, V = 7038(5) ?(3), and Z = 4. The structure was refined to R = 0.060 (R(w) = 0.145) for 14 245 data (F(o)(2) > 2sigma(F(o)(2))). Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)]O(3)SCF(3).C(6)H(6) (5a) at 173 K: monoclinic space group P2(1)/n (No. 14) with a = 14.785(3) ?, b = 15.289(4) ?, c = 32.067(5) ?, beta = 100.87(2) degrees, V=7118(5) ?(3), and Z = 4. The structure was refined to R = 0.046 (R(w) = 0.055) for 6962 data (I > 3.0sigma(I)). Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(2)(CNXyl)]O(3)SCF(3).Me(2)CHC(O)Me (7) at 295 K: monoclinic space group P2(1)/n (No. 14) with a = 14.951(2) ?, b = 12.4180(19) ?, c = 40.600(5) ?, beta = 89.993(11) degrees, V = 7537(3) ?(3), and Z = 4. The structure was refined to R = 0.074 (R(w) = 0.088) for 6595 data (I > 3.0sigma(I)).  相似文献   

8.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

9.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

10.
The reaction of bismuth(III) chloride with [PhCH(2)NMe(3)](2)[Fe(CO)(4)] at a ratio of 2:1 in acetonitrile yields the iron carbonyl-bismuth chloride adduct [PhCH(2)NMe(3)](2)[Bi(2)Cl(4)(&mgr;-Cl)(2){&mgr;-Fe(CO)(4)}] cleanly in high yield. The complex consists of two BiCl(3) groups bridged by an [Fe(CO)(4)](2)(-) unit. Two chloride ligands are shared between the Bi atoms, producing square-pyramidal coordination at bismuth and octahedral coordination at the iron center. The production of this complex represents the synthesis of a stable adduct of a highly nucleophilic metal carbonyl anion with a strongly Lewis acidic main group halide. The compound C(24)H(32)N(2)O(4)Bi(2)Cl(6)Fe crystallizes in the orthorhombic space group Pba2 (No. 32) with cell parameters a = 14.624(3) ?, b = 17.010(3) ?, c = 7.1990(10) ?, V = 1790.8(5) ?(3), and Z = 2.  相似文献   

11.
The syntheses and properties of tetra- and pentanuclear vanadium(IV,V) carboxylate complexes are reported. Reaction of (NBzEt(3))(2)[VOCl(4)] (1a) with NaO(2)CPh and atmospheric H(2)O/O(2) in MeCN leads to formation of (NBzEt(3))(2)[V(5)O(9)Cl(O(2)CPh)(4)] 4a; a similar reaction employing (NEt(4))(2)[VOCl(4)] (1b) gives (NEt(4))(2)[V(5)O(9)Cl(O(2)CPh)(4)] (4b). Complex 4a.MeCN crystallizes in space group P2(1)2(1)2(1) with the following unit cell dimensions at -148 degrees C: a = 13.863(13) ?, b = 34.009(43) ?, c = 12.773(11) ?, and Z = 4. The reaction between (NEt(4))(2)[VOBr(4)] (2a) and NaO(2)CPh under similar conditions gives (NEt(4))(2)[V(5)O(9)Br(O(2)CPh)(4)] (6a), and the use of (PPh(4))(2)[VOBr(4)] (2b) likewise gives (PPh(4))(2)[V(5)O(9)Br(O(2)CPh)(4)] (6b). Complex 6b crystallizes in space group P2(1)2(1)2(1) with the following unit cell dimensions at -139 degrees C: a = 18.638(3) ?, b = 23.557(4) ?, c = 12.731(2) ?, and Z = 4. The anions of 4a and 6b consist of a V(5) square pyramid with each vertical face bridged by a &mgr;(3)-O(2)(-) ion, the basal face bridged by a &mgr;(4)-X(-) (X = Cl, Br) ion, and a terminal, multiply-bonded O(2)(-) ion on each metal. The RCO(2)(-) groups bridge each basal edge to give C(4)(v)() virtual symmetry. The apical and basal metals are V(V) and V(IV), respectively (i.e., the anions are trapped-valence). The reaction of 1b with AgNO(3) and Na(tca) (tca = thiophene-2-carboxylate) in MeCN under anaerobic conditions gives (NEt(4))(2)[V(4)O(8)(NO(3))(tca)(4)] (7). Complex 7.H(2)O crystallizes in space group C2/c with the following unit cell dimensions at -170 degrees C: a = 23.606(4) ?, b = 15.211(3) ?, c = 23.999(5) ?, and Z = 4. The anion of 7 is similar to those of 4a and 6b except that the apical [VO] unit is absent, leaving a V(4) square unit, and the &mgr;(4)-X(-) ion is replaced with a &mgr;(4),eta(1)-NO(3)(-) ion. The four metal centers are now at the V(IV), 3V(V) oxidation level, but the structure indicates four equivalent V centers, suggesting an electronically delocalized system. Variable-temperature magnetic susceptibility data were collected on powdered samples of 4b, 6a, and 7 in the 2.00-300 K range in a 10 kG applied field. 4b and 6a both show a slow increase in effective magnetic moment (&mgr;(eff)) from approximately 3.6-3.7 &mgr;(B) at 320 K to approximately 4.5-4.6 &mgr;(B) at 11.0 K and then a slight decrease to approximately 4.2 &mgr;(B) at 2.00 K. The data were fit to the theoretical expression for a V(IV)(4) square with two exchange parameters J = J(cis)() and J' = J(trans)() (H = -2JS(i)()S(j)()): fitting of the data gave, in the format 4b/6a, J= +39.7/+46.4 cm(-)(1), J' = -11.1/-18.2 cm(-)(1) and g = 1.83/1.90, with the complexes possessing S(T) = 2 ground states. The latter were confirmed by magnetization vs field studies in the 2.00-30.0 K and 0.500-50.0 kG ranges: fitting of the data gave S(T) = 2 and D = 0.00 cm(-)(1) for both complexes, where D is the axial zero-field splitting parameter. Complex 7 shows a nearly temperature-independent &mgr;(eff) (1.6-2.0 &mgr;(B)) consistent with a single d electron per V(4) unit. The (1)H NMR spectra of 4b and 6a in CD(3)CN are consistent with retention of their pentanuclear structure on dissolution. The EPR spectrum of 7 in a toluene/MeCN (1:2) solution at approximately 25 degrees C yields an isotropic signal with a 29-line hyperfine pattern assignable to hyperfine interactions with four equivalent I = (7)/(2) (51)V nuclei.  相似文献   

12.
A series of heterobimetallic complexes of the type [Fe(III)M(II)L(&mgr;-OAc)(OAc)(H(2)O)](ClO(4)).nH(2)O (2-5) and [{Fe(III)Co(III)L(&mgr;-OAc)(OAc)}(2)(&mgr;-O)](ClO(4))(2).3H(2)O (6) where H(2)L is a tetraaminodiphenol macrocyclic ligand and M(II) = Zn(2), Ni(3), Co(4), and Mn(5) have been synthesized and characterized. The (1)H NMR spectrum of 6 exhibits all the resonances between 1 and 12 ppm. The IR and UV-vis spectra of 2-5 indicate that in all the cases the metal ions have similar coordination environments. A disordered crystal structure determined for 3 reveals the presence of a (&mgr;-acetate)bis(&mgr;-phenoxide)-Ni(II)Fe(III) core, in which the two metal ions have 6-fold coordination geometry and each have two amino nitrogens and two phenolate oxygens as the in-plane donors; aside from the axial bridging acetate, the sixth coordination site of nickel(II) is occupied by the unidentate acetate and that of iron(III) by a water molecule. The crystal structure determination of 6 shows that the two heterobinuclear Co(III)Fe(III) units are bound by an Fe-O-Fe linkage. 6 crystallizes in the orthorhombic space group Ibca with a = 17.577(4) ?, b = 27.282(7) ?, c = 28.647(6) ?, and Z = 8. The two iron(III) centers in 6 are strongly antiferromagnetically coupled, J = -100 cm(-1) (H = -2JS(1).S(2)), whereas the other two S(1) = S(2) = (5)/(2) systems, viz. [Fe(2)(III)(HL)(2)(&mgr;-OH)(2)](ClO(4))(2) (1) and the Fe(III)Mn(II) complex (5), exhibit weak antiferromagnetic exchange coupling with J = -4.5 cm(-1) (1) and -1.8 cm(-1) (5). The Fe(III)Ni(II) (3) and Fe(III)Co(II) (4) systems, however, exhibit weak ferromagnetic behavior with J = 1.7 cm(-1) (3) and 4.2 cm(-1) (4). The iron(III) center in 2-5 exhibits quasi-reversible redox behavior between -0.44 and -0.48 V vs Ag/AgCl associated with reduction to iron(II). The oxidation of cobalt(II) in 4 occurs quasi-reversibly at 0.74 V, while both nickel(II) and manganese(II) in 3 and 5 undergo irreversible oxidation at 0.85 V. The electrochemical reduction of 6 leads to the generation of 4.  相似文献   

13.
The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) ?, b = 19.040(3) ?, c = 25.660(5) ?, beta = 103.51(1) degrees, V = 8262.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) ?, b = 27.190(8) ?, c = 17.715(5) ?, beta = 113.95(1) degrees, V = 7152.0 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) ?, b = 19.678(4) ?, c = 25.036(4) ?, beta = 101.49(1) degrees, V = 8771.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2 and 5 in a 10.0 kG field in the 5.0-320.0 K range. The effective magnetic moment (&mgr;(eff)) for 2 gradually decreases from 8.61 &mgr;(B) per molecule at 320.0 K to 5.71 &mgr;(B) at 13.0 K and then increases slightly to 5.91 &mgr;(B) at 5.0 K. For 5, &mgr;(eff) gradually decreases from 10.54 &mgr;(B) per molecule at 320.0 K to 8.42 &mgr;(B) at 40.0 K, followed by a more rapid decrease to 6.02 &mgr;(B) at 5.0 K. On the basis of the crystal structure of 5 showing the single Mn(II) ion in each [Mn(4)O(2)](7+) subcore to be at a wingtip position, the Mn(II) ion in 2 was concluded to be at a wingtip position also. Employing the reasonable approximation that J(w)(b)(Mn(II)/Mn(III)) = J(w)(b)(Mn(III)/M(III)), where J(w)(b) is the magnetic exchange interaction between wingtip (w) and body (b) Mn ions of the indicated oxidation state, a theoretical chi(M) vs T expression was derived and used to fit the experimental molar magnetic susceptibility (chi(M)) vs T data. The obtained fitting parameters were J(w)(b) = -3.9 cm(-)(1), J(b)(b) = -9.2 cm(-)(1), and g = 1.80. These values suggest a S(T) = (5)/(2) ground state spin for 2, which was confirmed by magnetization vs field measurements in the 0.5-50.0 kG magnetic field range and 2.0-30.0 K temperature range. For complex 5, since the two bonds connecting the two [Mn(4)O(2)](7+) units are Jahn-Teller elongated and weak, it was assumed that complex 5 could be treated, to a first approximation, as consisting of weakly-interacting halves; the magnetic susceptibility data for 5 at temperatures >/=40 K were therefore fit to the same theoretical expression as used for 2, and the fitting parameters were J(w)(b) = -14.0 cm(-)(1) and J(b)(b) = -30.5 cm(-)(1), with g = 1.93 (held constant). These values suggest an S(T) = (5)/(2) ground state spin for each [Mn(4)O(2)](7+) unit of 5, as found for 2. The interactions between the subunits are difficult to incorporate into this model, and the true ground state spin value of the entire Mn(8) anion was therefore determined by magnetization vs field studies, which showed the ground state of 5 to be S(T) = 3. The results of the studies on 2 and 5 are considered with respect to spin frustration effects within the [Mn(4)O(2)](7+) units. Complexes 2 and 5 are EPR-active and -silent, respectively, consistent with their S(T) = (5)/(2) and S(T) = 3 ground states, respectively.  相似文献   

14.
A mononucleating tripyridine ligand, 2-(bis(2-pyridyl)methyl)-6-methylpyridine (L(1)), and a dinucleating hexapyridine ligand, 1,2-bis[2-(bis(2-pyridyl)methyl)-6-pyridyl]ethane (L(2)), have been prepared. The reaction of a carbanion of 2,6-lutidine with 2-bromopyridine affords L(1) which is converted to L(2) quantitatively by treating with tert-butyllithium and 1,2-dibromoethane. (&mgr;-Oxo)bis(&mgr;-acetato)diiron(III) complexes [Fe(2)(O)(OAc)(2)(L(1))(2)](ClO(4))(2) (1) and [Fe(2)(O)(OAc)(2)L(2)](ClO(4))(2) (2) have been synthesized and characterized by means of infrared, UV/vis, mass, and M?ssbauer spectroscopies and by measuring magnetic susceptibility and cyclic voltammograms. All the spectral data are consistent with the (&mgr;-oxo)bis(&mgr;-acetato)diiron(III) core structure in both 1 and 2. A relatively strong molecular ion peak at m/z 865 corresponding to [{Fe(2)O(OAc)(2)L(2)}(ClO(4))](+) in a FAB mass spectrum of 2 suggests the stabilization of the (&mgr;-oxo)bis(&mgr;-acetato)diiron(III) core structure by L(2) in a solution state. The compound 2.DMF.2-PrOH.H(2)O, chemical formula C(44)Cl(2)Fe(2)H(51)N(7)O(16), crystallizes in the monoclinic space group C2/c with a = 22.034(6) ?, b = 12.595(5) ?, c = 20.651(7) ?, beta = 121.49(2) degrees, and Z = 4. The cation has 2-fold symmetry with the bridging oxygen atom on the 2-fold axis: Fe-(&mgr;-O) = 1.782(5) ?, Fe-O-Fe = 123.6(6) degrees, and Fe.Fe = 3.142(3) ?. The diiron(III) core structure of 2 seems to be stabilized by encapsulation of the ligand. Compound 2 is the first example of a discrete (&mgr;-oxo)bis(&mgr;-acetato)diiron(III) complex with a dinucleating ligand.  相似文献   

15.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

16.
La(OSO(2)CF(3))(3) reacts with 4 equiv of LiP(t)Bu(2) in tetrahydrofuran to give dark red ((t)Bu(2)P)(2)La[(&mgr;-P(t)Bu(2))(2)Li(thf)] (1). Yb(OSO(2)CF(3))(3) reacts with LiP(t)Bu(2) in tetrahydrofuran in a 1:5 ratio to produce Yb[(&mgr;-P(t)Bu(2))(2)Li(thf)](2) (2) and 1/2 an equiv of (t)Bu(2)P-P(t)Bu(2). Both 1 and 2 crystallize in the monoclinic space group P2(1)/c. Crystal data for 1 at 214 K: a = 11.562 (1) ?, b = 15.914 (1) ?, c = 25.373 (3) ?, beta = 92.40 (1) degrees; V = 4664.5 ?(3); Z = 4; D(calcd) = 1.137 g cm(-)(3); R(F)() = 2.61%. Crystal data for 2 at 217 K: a = 21.641 (2) ?, b = 12.189 (1) ?, c = 20.485 (2) ?, beta = 109.01 (1) degrees; V = 5108.9 ?(3); Z = 4; D(calcd) = 1.185 g cm(-)(3); R(F)() = 2.80%. The molecular structures of 1 and 2 show the four-coordinate lanthanide atoms in distorted tetrahedral environments. These complexes are the first representatives of the lanthanide elements surrounded by four only-phosphorus-containing substituents. The main features of the crystal structure of 1 are the shortest La-P distances (2.857(1) and 2.861(1) ?) reported so far and a three-coordinate lithium cation. The molecular structure of 2 represents a divalent bis "ate" complex with two three-coordinate lithium cations. Complex 2 shows photoluminescent properties. VT NMR spectra ((7)Li and (31)P) are reported for 1and 2.  相似文献   

17.
A series of bis(&mgr;-oxo)dirhenium complexes, [Re(2)(&mgr;-O)(2)(L)(2)](PF(6))(n)() (L = tris(2-pyridylmethyl)amine (tpa), n = 3 (1), n = 4 (1a); L = ((6-methyl-2-pyridyl)methyl)bis(2-pyridylmethyl)amine (Metpa), n = 3 (2), n = 4 (2a); bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine (Me(2)tpa), n = 3 (3), n = 4 (3a)), have been prepared and characterized by several physical methods. X-ray crystallographic studies for 2, 2a.2CH(3)CN.2H(2)O (2a'), and 3a' (ReO(4)(-) salt), include the first structural determinations of (i) the bis(&mgr;-oxo)-Re(III)Re(IV) complex (2) and (ii) the pair of Re(III)Re(IV) and Re(IV)(2) complexes (2 and 2a'). All the complexes have a centrosymmetric structure, suggesting that the mixed-valence state 2 is of structurally delocalized type. The Re-Re distances for 2, 2a.2CH(3)CN.2H(2)O, and 3a' are 2.426(1), 2.368(1), and 2.383(1) ?, respectively, being consistent with the bond order of 2.5 (sigma(2)pi(2)delta(2)delta) for 2 and 3 (sigma(2)pi(2)delta(2)) for the others. Methyl substitution on the pyridyl moiety of the ligands has no significant influence to the overall structure. Cyclic voltammetry of 1 shows two reversible redox waves at -0.77 ((III,III)/(III,IV)) and 0.09 V ((III,IV)/(IV,IV)) vs Ag/AgCl in acetonitrile. The potentials are slightly more positive for 2 (-0.66 and 0.14 V) and 3(-0.64 and 0.20 V). No proton-coupled redox behavior was observed on addition of p-toluenesulfonic acid. Complexes, 1a, 2a, and 3a show a strong visible absorption band at 477 nm (epsilon, 9200 dm(3) mol(-)(1) cm(-)(1)), 482 (11200), and 485 (8700), respectively, which is assigned to the pi-pi transition within the Re(2)(&mgr;-O)(2) core. For the mixed-valence complexes 1, 2, and 3, a strong band is observed in the longer wavelength region (556-572 nm). Crystal data: 2, monoclinic, space group C2/c (No.15), a = 11.799(2) ?, b = 19.457(3) ?, c = 21.742(4) ?, beta = 98.97(1) degrees, Z = 4; 2a', triclinic, space group P&onemacr; (No. 2), a = 13.151(3) ?, b = 13.535(2) ?, c = 10.243(3) ?, alpha = 104.37(2) degrees, beta = 109.02(2) degrees, gamma = 106.87(1) degrees, Z = 1; 3a', monoclinic, space group P2(1)/n (No. 14), a = 13.384(3) ?, b = 14.243(2) ?, c = 13.215(6) ?, beta = 106.88(2) degrees, Z = 2.  相似文献   

18.
The addition of [N(CH(3))(4)]OH to a methanolic solution of FeCl(3) and thme (thme = 1,1,1-tris(hydroxymethyl)ethane) yielded [N(CH(3))(4)](2)[OFe(6)(H(-)(3)thme)(3)(OCH(3))(3)Cl(6)].2H(2)O (1). Crystal data: C(26)H(64)Cl(6)Fe(6)N(2)O(15), trigonal space group P31c, a = 12.459(2) ?, c = 18.077(4) ?, Z = 2. The complex anion exhibits the well-known &mgr;(6)-O-Fe(6)-(&mgr;(2)-OR)(12) structure with three &mgr;(2)-methoxo bridges, three triply deprotonated H(-)(3)thme ligands, where each alkoxo group bridges two Fe(III) centers, and six terminally coordinating Cl(-) ligands. In contrast to two previously described ferric complexes with an analogous structure of the complex core, compound 1 is stable in air. Variable-temperature magnetic susceptibility measurements established antiferromagnetic exchange coupling interactions with J(trans)(Fe-&mgr;(6)-O-Fe) = 24.5 cm(-)(1), J(cis)(Fe-&mgr;(2)-O(thme)-Fe) = 11.5 cm(-)(1), and J(cis)'(Fe-&mgr;(2)-OCH(3)-Fe) = 19.5 cm(-)(1). The unexpectedly high value for J(trans) is explained by means of a superexchange pathway and is discussed for a simplified model by using MO calculations at the extended Hückel level.  相似文献   

19.
Two isomers of the phosphido-bridged platinum cluster Pt(3)(&mgr;-PPh(2))(3)Ph(PPh(3))(2) (2 and 3) have been isolated, and their structures have been solved by single-crystal X-ray diffraction. Compound 2 crystallizes in the orthorhombic space group Cmc2(1) with a = 22.192(10) ?, b = 17.650(9) ?, c = 18.182(8) ?, and Z = 4. Compound 3 crystallizes with 2 molecules of dichloromethane in the monoclinic space group C2/c with a = 21.390(10) ?, b = 18.471(9) ?, c = 19.021(11) ?, beta = 105.27(5) degrees, and Z = 4. The two isomers differ essentially in their metal-metal distances and Pt-(&mgr;-PPh(2))-Pt angles. Thus 2, having an imposed C(s) symmetry, contains a bent chain of metal atoms with two short Pt-Pt distances of 2.758(3) ? and a long separation of 3.586(2) ?. In 3, which has an imposed C(2) symmetry, the metal atoms form an isosceles triangle with two Pt-Pt distances of 2.956(3) ? and one of 3.074(4) ?. These isomers can be smoothly interconverted by changing the crystallization solvents. Solution and solid-state (31)P NMR studies have been performed in order to assign the resonances of the different P nuclei and relate their chemical shifts with their structural environments. Raman spectroscopy was used to assign the nu(Pt-Pt) modes of the two structural isomers. Theoretical studies based on extended Hückel calculations and using the fragment molecular orbital approach show that the isomer with the three medium Pt-Pt distances is slightly more stable, in agreement with earlier theoretical predictions. Cluster core isomerism remains a rare phenomenon, and the present example emphasizes the role and the importance of flexible phosphido bridges in stabilizing clusters as well as the unprecedented features which can be observed in phosphine phosphido-rich metal clusters.  相似文献   

20.
The synthesis and characterization of nido-[1,1,2,2-(CO)(4)-1,2-(PPh(3))(2)-1,2-FeIrB(2)H(5)] (1) is reported. 1 is formed in low yield as a degradation product from the reaction between [{&mgr;-Fe(CO)(4)}B(6)H(9)](-) and trans-Ir(CO)Cl(PPh(3))(2) in THF and is characterized from NMR, IR, and analytical data and by a single-crystal X-ray diffraction study. 1 crystallizes in the monoclinic space group P2(1)/n with a = 12.8622(12), b = 14.3313(12), c = 23.579(3) ?, beta = 97.12(2) degrees, Z = 4, V = 4257.0(8) ?(3), R(1) = 4.83%, and wR(2)()(F(2)) = 12.43%. The heterobimetallaborane structure may be viewed as a derivative of the binary boron hydride nido-[B(4)H(7)](-) and is related to the known homobimetallatetraborane analogues [Fe(2)(CO)(6)B(2)H(6)] and [Co(2)(CO)(6)B(2)H(4)]. 1 exhibits proton fluxionality in its (1)H NMR spectrum, which is related to that found in the latter two compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号