首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The kinetics and mechanism for the thermal decomposition of diketene have been studied in the temperature range 510–603 K using highly diluted mixtures with Ar as a diluent. The concentrations of diketene, ketene, and CO2 were measured by FTIR spectrometry using calibrated standard mixtures. Two reaction channels were identified. The rate constants for the formation of ketene (k1) and CO2 (k2) have been determined and compared with the values predicted by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory for the branching reaction. The first-order rate constants, k1 (s−1) = 1015.74 ± 0.72 exp(−49.29 (kcal mol−1) (±1.84)/RT) and k2 (s−1) = 1014.65 ± 0.87 exp(−49.01 (kcal mol−1) (±2.22)/RT); the bulk of experimental data agree well with predicted results. The heats of formation of ketene, diketene, cyclobuta-1,3-dione, and cyclobuta-1,2-dione at 298 K computed from the G2M scheme are −11.1, −45.3, −43.6, and −40.3 kcal mol−1, respectively. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 580–590, 2007  相似文献   

2.
In the title compound [systematic name: 3‐(azaniumylcarbamoyl)pyridinium dichloride], C6H9N3O2+·2Cl, the ions are connected by N—H...Cl hydrogen bonds to form layers and C—H...Cl interactions expand the layers into a three‐dimensional net. The energies of the N—H...Cl interactions range from typical for very weak interactions (0.17 kcal mol−1) to those observed for relatively strong interactions (29.1 kcal mol−1). C—H...Cl interactions can be classified as weak and mildly strong (energies ranging from 2.2 to 8.2 kcal mol−1). Despite the short contacts existing between the parallel aromatic rings of the cations, π–π interactions do not occur.  相似文献   

3.
Zn2+ is a very important factor in promoting the formation of amyloid beta (Aβ) aggregates and amyloid plaques. The Zn2+-bound Aβ species generate amorphous or low molecular-weight oligomers. However, it is a lack of studies to approach the starting structural features (dimerization) in Aβ nucleation processes with and without Zn2+, which is the key point in understanding Zn2+-induced nucleation mechanisms. To better understand the effect of concentration, structural properties, and the driving force, 14 independent replica exchange molecular dynamics simulations were performed in Aβ28 dimerization with and without Zn2+ (zAβ28) cooperation. Our scanning results show that the aggregation propensity is easier in Aβ28-Aβ28 and Aβ28-zAβ28 systems than zAβ28-zAβ28 system. In binding property, the Aβ28-Aβ28 model (−61.5 kcal mol−1) is stronger than zAβ28-zAβ28 (−26.6 kcal mol−1) and Aβ28-zAβ28 (−7.24 kcal mol−1) models. Further analysis confirmed that H13 and H14 residues play specific roles in the three systems. The key point is the orientation of N atom of the imidazole ring in histidine residues. Furthermore, we discovered different driving forces for each system. Our current study contributes to the understanding of how the Aβ28 dimer interacts with Zn2+, which could lead to new insights into Zn2+-induced nucleation mechanisms.  相似文献   

4.
It was established that the cytosine·thymine (C·T) mismatched DNA base pair with cis‐oriented N1H glycosidic bonds has propeller‐like structure (|N3C4C4N3| = 38.4°), which is stabilized by three specific intermolecular interactions–two antiparallel N4H…O4 (5.19 kcal mol?1) and N3H…N3 (6.33 kcal mol?1) H‐bonds and a van der Waals (vdW) contact O2…O2 (0.32 kcal mol?1). The C·T base mispair is thermodynamically stable structure (ΔGint = ?1.54 kcal mol?1) and even slightly more stable than the A·T Watson–Crick DNA base pair (ΔGint = ?1.43 kcal mol?1) at the room temperature. It was shown that the C·T ? C*·T* tautomerization via the double proton transfer (DPT) is assisted by the O2…O2 vdW contact along the entire range of the intrinsic reaction coordinate (IRC). The positive value of the Grunenberg's compliance constants (31.186, 30.265, and 22.166 Å/mdyn for the C·T, C*·T*, and TSC·T ? C*·T*, respectively) proves that the O2…O2 vdW contact is a stabilizing interaction. Based on the sweeps of the H‐bond energies, it was found that the N4H…O4/O4H…N4, and N3H…N3 H‐bonds in the C·T and C*·T* base pairs are anticooperative and weaken each other, whereas the middle N3H…N3 H‐bond and the O2…O2 vdW contact are cooperative and mutually reinforce each other. It was found that the tautomerization of the C·T base mispair through the DPT is concerted and asynchronous reaction that proceeds via the TSC·T ? C*·T* stabilized by the loosened N4? H? O4 covalent bridge, N3H…N3 H‐bond (9.67 kcal mol?1) and O2…O2 vdW contact (0.41 kcal mol?1). The nine key points, describing the evolution of the C·T ? C*·T* tautomerization via the DPT, were detected and completely investigated along the IRC. The C*·T* mispair was revealed to be the dynamically unstable structure with a lifetime 2.13·× 10?13 s. In this case, as for the A·T Watson–Crick DNA base pair, activates the mechanism of the quantum protection of the C·T DNA base mispair from its spontaneous mutagenic tautomerization through the DPT. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Pnictinidenes are an increasingly relevant species in main group chemistry and generally exhibit proclivity for the triplet electronic ground state. However, the elusive singlet electronic states are often desired for chemical applications. We predict the singlet-triplet energy differences (ΔEST=ESinglet−ETriplet) of simple group 15 and 16 substituted pnictinidenes (Pn−R; Pn=P, As, Sb, or Bi) with highly reliable focal-point analyses targeting the CCSDTQ/CBS level of theory. The only cases we predict to have favorable singlet states are P−PH2 (−3.2 kcal mol−1) and P−NH2 (−0.2 kcal mol−1). ΔEST trends are discussed in light of the geometric predictions as well as qualitative natural bond order analysis to elucidate some of the important electronic structure features. Our work provides a rigorous benchmark for the ΔEST of fundamental Pn−R moieties and provides a firm foundation for the continued study of heavier pnictinidenes.  相似文献   

6.
The spin-forbidden dissociation reaction of the N2O(X1Σ+) ground state has been investigated by both quantum calculations and experiments. Ab initio prediction at the CCSD(T)/CBS(TQ5)//CCSD(T)/aug-cc-pVTZ+d level of theory gave the crossing point (MSX) energy at 60.1 kcal/mol for the N2O(X1Σ+) → N2() + O(3P) transition, in good agreement with published data. The T- and P-dependent rate coefficients, k1(T,P), for the nonadiabatic thermal dissociation predicted by nonadiabatic Rice-Ramsperger-Kassel-Marcus (RRKM) calculations agree very well with literature data. The rate constants at the high- and low-pressure limits, k1 = 1011.90 exp (−61.54 kcal mol−1/RT) s−1 and k1o = 1014.97 exp(−60.05 kcal mol−1/RT) cm3 mol−1 s−1, for example, agree closely with the extrapolated results of Röhrig et al. at both pressure limits. The second-order rate constant (k1o) is also in excellent agreement with our result measured by FTIR spectrometry in the present study for the temperature range of 860-1023 K as well as with many existing high-temperature data obtained primarily by shock-wave heating up to 3340 K. Kinetic modeling of the NO product yields measured at long reaction times in the present work also allowed us to reliably estimate the rate constant for reaction (3), O + N2O → N2 + O2, based on its strong competition with the NO formation from reaction (2) which has been better established. The modeled values of k3 confirmed the previous finding by Davidson et al. with significantly smaller values of A-factor and activation energy than the accepted ones. A least-squares analysis of both sets of data gave k3 = 1012.22 ± 0.04 exp[− (11.65 ± 0.24 kcal mol−1/RT)] cm3 mol−1 s−1, covering the wide temperature range of 988-3340 K.  相似文献   

7.
Ab initio calculations at the MP2/6-311+G(2d,2p) and the empirical water many-body model TCPE have been applied to the study of four water tetramers corresponding to various molecular arrangements. For the cyclic tetramer (where each molecule is simultaneously donor and acceptor of hydrogen bonds, HBs), cooperative effects have been shown from ab initio computations to be stabilizing and to represent a contribution in the binding energy of 9 kcal mol−1, while for the tetramer where only two molecules are simultaneously donor and acceptor of HB, such effects are stabilizing by only 1.5 kcal mol−1. At last, for the tetramer where no molecule is simultaneously donor and acceptor of HBs, cooperative effects are smoothly destabilizing. TCPE predictions have been shown to be in good agreement with these ab initio estimates, both in terms of binding energy and cooperative effect contribution, which exhibits the accuracy of this potential.  相似文献   

8.
CF3H as a proton donor was paired with a variety of anions, and its properties were assessed by MP2/aug‐cc‐pVDZ calculations. The binding energy of monoanions halide, NO3?, formate, acetate, HSO4?, and H2PO4? lie in the 12–17 kcal mol?1 range, although F? is more strongly bound, by 26 kcal mol?1. Dianions SO42? and HPO42? are bound by 27 kcal mol?1, and trianion PO43? by 45 kcal mol?1. When two O atoms are available on the anion, the CH???O? H‐bond (HB) is usually bifurcated, although asymmetrically. The CH bond is elongated and its stretching frequency redshifted in these ionic HBs, but the shift is reduced in the bifurcated structures. Slightly more than half of the binding energy is attributed to Coulombic attraction, with smaller contributions from induction and dispersion. The amount of charge transfer from the anions to the σ*(CH) orbital correlates with many of the other indicators of bond strength, such as binding energy, CH bond stretch, CH redshift, downfield NMR spectroscopic chemical shift of the bridging proton, and density at bond critical points.  相似文献   

9.
Chemisorption of Furan on the surfaces of four different semiconductors (Al12N12, Al12P12, B12N12, and B12P12) has been investigated, and the results have been compared using density functional theory in terms of energetic, geometric, and electronic property. Two functionals, dispersion corrected (wB97XD) and non‐corrected (B3LYP), have been used for calculation of binding energy. The results show that chemisorption of Furan on these semiconductors is in the order of Al12N12 (−98.4 kJ mol−1) > Al12P12 (−77.5 kJ mol−1) > B12N12 (−46.6 kJ mol−1) > B12P12 (−18.3 kJ mol−1), while the order of change in the HOMO–LUMO gap of semiconductors upon adsorption of Furan is found as B12N12 > B12P12 > Al12P12 > Al12N12, which implies to the higher changes in the electronic structure of B‐containing clusters (B12N12 and B12P12) compared to Al‐containing clusters (Al12N12 and Al12P12). The NBO charge analyses reveal maximum and minimum charge transfer upon adsorption of Furan on B12N12 and B12P12, respectively. Based on the results, it was found that Al12N12 and B12N12 as the most appropriate adsorbent and the most sensitive sensor for Furan, respectively.  相似文献   

10.
《Electroanalysis》2017,29(5):1481-1489
Polymorphs of Manganese di oxide (MnO2) such as alpha (α), beta (β), gamma (γ), epsilon (ϵ), and MnOOH type materials were prepared via hydrothermal approach under different conditions. The samples were characterized by XRD, FESEM, FT‐IR, Raman and BET analysis. Cyclic voltammetry (CV) analysis confirm that α ‐ MnO2 shows better electro‐catalytic ability. Amperometry sensing of hydrogen peroxide (H2O2) was carried out by varying applied potential value with the polymorphs of MnO2. Compared with the other phases of MnO2, α ‐ MnO2 shows high linear range up to 20μM. The calculated sensitivity value for H2O2 sensing of different phases is in the order of α ‐ MnO2, β ‐ MnO2, ϵ ‐ MnO2, γ ‐ MnO2, MnOOH and found to be 0.094 mA μM−1 cm−2 > 0.072 mA μM−1 cm−2 > 0.07 mA μM−1 cm−2 > 0.03 mA μM−1 cm−2 > 0.01 mA μM−1 cm−2 respectively. All the characterization results reveal that crystalline phase plays a vital role in electrochemical behavior rather than crystalline size, morphology, surface charge, surface area.  相似文献   

11.
In the title compound, C10H7NO3·H2O, the zwitterionic organic molecules and the water molecules are connected by N—H...O and O—H...O hydrogen bonds to form ribbons, and π–π stacking interactions expand these ribbons into a three‐dimensional net. The energies of these hydrogen bonds adopt values typical for mildly weak interactions (3.33–7.75 kcal mol−1; 1 kcal mol−1 = 4.184 kJ mol−1). The total π–π stacking interactions between aromatic molecules can be classified as mildly strong (energies of 15.3 and 33.9 kcal mol−1), and they are made up of multiple constituent π–π interactions between six‐membered rings. The short intermolecular C—H...O contact between two zwitterionic molecules is nonbonding in character.  相似文献   

12.
A combination of microvolumetry, the rotating sector method, ESR, 1H NMR, and IR allowed to establish a detailed mechanism of liquid‐phase oxidation of vinyl compounds X1CH=CHX2 and X1CH=CH–CH=CHX2 (X1 and X2—a polar substitute: С6Н5–, CO–, СOO–) initiated by azobisisobutyronitrile. A distinctive feature of the mechanism is the fact that the oxidation chain is carried out by a low‐molecular hydroperoxide radical joining the π‐bond. For nine compounds in the temperature range of 303–353 K, relative chain propagation and termination rate constants were measured (k 2k 3−0.5). Absolute values of k 2 were obtained for diphenylethylene (110 L·mol−1·s−1), ethyl ether of trans‐phenyl‐pentadiene acid (13 L·mol−1·s−1), and methyl ether of trans‐phenyl‐pentadiene acid (14.2 L·mol−1·s−1) at T = 323 K. For the same conditions, 10−8k 3 were calculated for diphenylethylene (0.87 L·mol−1·s−1) and methyl ether of trans‐phenyl‐pentadiene acid (1.21 L·mol−1·s−1). A cyclic mechanism of the oxidation chain termination on introduced antioxidants (stable nitroxyl radicals of the piperidine series ( > NO) and the transition metal compounds (Men )) was established. The inhibition factor (f ) showing how many reaction chains are terminated by the one particle of the antioxidant is equal to 102. The cyclic chain termination is caused by the following reactions: HO2 + > NO → NOH + O2, HO2● + NOH → >NO + H2O2 (for >NO) and HO2 + Men → Men +1 + HO2, HO2 + Men +1 → Men + H+ + O2 (for Men ).  相似文献   

13.
Reactions of gold anions and cations generated by laser desorption/ionization were studied in the FTICR spectrometer. Au associated with C6F6 to give the novel Au(C6F6) complex, whose binding energy was estimated to be 24 ± 4 kcal mol−1 from analysis of the radiative association (RA) kinetics. Au+ associated with C6F5H to give Au+(C6F5H), with binding energy estimated to be 31 kcal mol−1. Au+ reacted with C6H6 to form the well known Au+(C6H6) and Au+(C6H6)2 complexes. The observation of rapid charge transfer from Au+(C6H6) to C6H6 was interpreted as showing that benzene binds more strongly to neutral Au than to Au+. The neutral Au–C6H6 bond is accordingly concluded to be stronger than about 70 kcal mol−1.  相似文献   

14.
Reaction of {LiC6H2−2,4,6-Cyp3⋅Et2O}2 (Cyp=cyclopentyl) ( 1 ) of the new dispersion energy donor (DED) ligand, 2,4,6-triscyclopentylphenyl with SnCl2 afforded a mixture of the distannene {Sn(C6H2−2,4,6-Cyp3)2}2 ( 2 ), and the cyclotristannane {Sn(C6H2−2,4,6-Cyp3)2}3 ( 3 ). 2 is favored in solution at higher temperature (345 K or above) whereas 3 is preferred near 298 K. Van't Hoff analysis revealed the 3 to 2 conversion has a ΔH=33.36 kcal mol−1 and ΔS=0.102 kcal mol−1 K−1, which gives a ΔG300 K=+2.86 kcal mol−1, showing that the conversion of 3 to 2 is an endergonic process. Computational studies show that DED stabilization in 3 is −28.5 kcal mol−1 per {Sn(C6H2−2,4,6-Cyp3)2 unit, which exceeds the DED energy in 2 of −16.3 kcal mol−1 per unit. The data clearly show that dispersion interactions are the main arbiter of the 3 to 2 equilibrium. Both 2 and 3 possess large dispersion stabilization energies which suppress monomer dissociation (supported by EDA results).  相似文献   

15.
Helicenes combine two central themes in chemistry: extended π-conjugation and chirality. Hetero-atom doping preserves both characteristics and allows modulation of the electronic structure of a helicene. Herein, we report the (BO)2-doped tetrathia[7]helicene 1 , which was prepared from 2-methoxy-3,3′-bithiophene in four steps. 1 is formally derived by substituting two (Mes)B−O moieties in place of (H)C=C(H) fragments in two benzene rings of the parent tetrathia[7]helicene. X-ray crystallography revealed a dihedral angle of 50.26(9)° between the two terminal thiophene rings. The (P)-/(M)- 1 enantiomers were separated by chiral HPLC and are configurationally stable at room temperature. The experimentally determined enantiomerization barrier of 27.4±0.1 kcal mol−1 is lower than that of tetrathia[7]helicene (39.4±0.1 kcal mol−1). The circular dichroism spectra of (P)- and (M)- 1 show a perfect mirror-image relationship. 1 is a blue emitter (λem=411 nm) with a photoluminescence quantum efficiency of ΦPL=6 % (cf. tetrathia[7]helicene: λem≈405 nm, ΦPL=5 %).  相似文献   

16.
Reactions of Fe+ and FeL+ [L=O, C4H6, c-C5H6, C5H5, C6H6, C5H4(=CH2)] with thiophene, furan, and pyrrole in the gas phase by using Fourier transform mass spectrometry are described. Fe+, Fe(C5H5)+, and FeC6H 6 + yield exclusive rapid adduct formation with thiophene, furan, and pyrrole. In addition, the iron-diene complexes [FeC4H 6 + and Fe(c-C5H6)+], as well as FeC5H4(=CH2)+ and FeO+, are quite reactive. The most intriguing reaction is the predominant direct extrusion of CO from furan by FeC4H6 +, Fe(c-C5H6)+, and FeC5H4(=CH2)+. In addition, FeC4H 6 + and Fe(c-C5H6)+ cause minor amounts of HCN extrusion from pyrrole. Mechanisms are presented for these CO and HCN extrusion reactions. The absence of CS elimination from thiophene may be due to the higher energy requirements than those for CO extrusion from furan or HCN extrusion from pyrrole. The dominant reaction channel for reaction of Fe(c-C5H6)+ with pyrrole and thiophene is hydrogen-atom displacement, which implies DO(Fa(N5H5)+-C4H4X)>DO(Fe(C5H5)+-H)=46±5 kcal mol?1. DO(Fe+-C4H4S) and DO(Fe+-C4H5N)=DO(Fe+-C4H6)=48±5 kcal mol?1. Finally, 55±5 kcal mol?1=DO(Fe+-C6H6)>DO(Fe+-C4H4O)>DO(Fe+-C2H4)=39.9±1.4 kcal mol?1. FeO+ reacts rapidly with thiophene, furan, and pyrrole to yield initial loss of CO followed by additional neutral losses. DO(Fe+-CS)>DO(Fe+-C4H4S)≈48±5 kcal mol?1 and DO(Fe+-C4H5N)≈48±5 kcal mol?1>DO(Fe+-HCN)>DO(Fe+-C2H4)=39.9±1.4 kcal mil?1.  相似文献   

17.
The thermodynamic stabilities of P2, P4, and three P8 cage structure were investigated through high‐precision CBS‐Q calculations. The CBS‐Q values for the bond energy of P2 (ΔEo: +115.7 kcal mol−1) and the formation of P4 from P2 (Δ Eo:‐56.6 kcal mol−1) were in excellent agreement with the experimental values (Eo: +117 and ‐56.4 kcal mol−1 respectively). Among the P8 cages, the cubane structure was the least stable (Δ Eo +37 kcal vs. 2×P4). The most stable P8 isomer adopts a cuneane structure resembling S4N4, and is more stable than white phosphorus at T = 0 K (Δ Eo −3.3 kcal mol−1), but still unstable under standard conditions for entropic reasons (Δ Go of +8.1 kcal mol−1 vs. 2×P4). The CBS‐Q energies represent significant revisions (6–20 kcal mol−1) of previous computational predictions obtained by high‐level single method calculations. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:453–457, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20119  相似文献   

18.
By use of a THF-containing trimethylsilylmethyl scandium catalyst system (C5Me4SiMe3)Sc(CH2SiMe3)2(THF)/[Ph3C][B(C6F5)4], the multi-component copolymerization of 10-bromo-1-decene (BrDC) with ethylene, propylene, and dienes has been achieved to afford a new family of bromine-functionalized polyolefins with controllable composition and high molecular weight. The copolymerization of BrDC with ethylene afforded the well-defined BrDC–ethylene copolymers with high BrDC incorporation (up to 12 mol%) and high molecular weight (Mw > 100 kg mol−1). The terpolymerization of propylene, ethylene with BrDC afforded random ethylene–propylene–BrDC terpolymers with controllable bromine content (2 ~ 11 mol%), high molecular weight (Mw > 100 kg mol−1) and low glass transition temperature (Tg = −51 °C ~ −67 °C). Moreover, the tetrapolymerization of ethylene, propylene, BrDC, and ethylidene norbornene or conjugated dienes such as isoprene and myrcene has been achieved for the first time to afford selectively the bromine-functionalized ethylene–propylene–diene rubbers containing various types of double bonds.  相似文献   

19.
Ab initio calculations have been performed to examine the properties of the protonated fluoroform cation (CF3H2+). These calculations show that the global minimum for CF3H2+ is [CF2H … FH]+ among three possible configurational isomers. This isomer is suggested to be an ion-dipole complex between CF2H+ and FH. The barrier to internal rotation of the bond between carbon of CF2H+ and fluorine of HF is calculated as 0.96 kcal mol−1 at the MP2/6-31G(d,p) level of theory. The heat of formation of CF3H2+ at 298.15 K is estimated to be 60.6 kcal mol−1 from the G2 calculation.  相似文献   

20.
Hydrogen bonds (HBs) play a key role in the supramolecular arrangement of crystalline solids and, although they have been extensively studied, the influence of their strength and geometry on crystal packing remains poorly understood. Here we describe the crystal structures of two novel protic gabapentin (GBP) pharmaceutical salts prepared with the coformers methanesulfonic acid (GBP:METHA) and ethanesulfonic acid (GBP:ETHA). This study encompasses experimental and computational electronic structure analyses of 1H NMR chemical shifts (CSs), upon in silico HB cleavage. GBP:METHA and GBP:ETHA crystal packing comprise two main structural domains: an ionic layer (characterized by the presence of charge-assisted +NHGBP⋯ OMETHA/ETHA HB interactions) and a neutral layer generated in a different way for each salt, mainly due to the presence of bifurcated HB interactions. A comprehensive study of HB networks is presented for GBP:METHA, by isolating molecular fragments involved in distinct HB types (NH⋯ O, OH⋯ O, and CH⋯ O) obtained from in silico disassembling of an optimized three-dimensional packing structure. Formation of HB leads to calculated 1H NMR CS changes from 0.4 to ~5.8 ppm. This study further attempts to assess how 1H NMR CS of protons engaged in certain HB are affected when other nearby HB, involving bifurcated or geminal/vicinal hydrogen atoms, are removed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号