首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Catalysis with lanthanide (Ln) complexes has been underestimated for long time, although Ln(III) complexes have great advantages as Lewis acid catalysts for "asymmetric" carbon-carbon bond-forming reactions. Lanthanide complexes are highly active in ligand-substitution reactions, especially with hard ligands. The association with substrates and dissociation of products are achieved fast enough for high catalyst efficiency. The asymmetric catalysis of organic reactions can be greatly advanced by the use of Ln complexes with chiral ligands such as binaphthol (binol). Ln(II) complexes are good reducing agents, which can be used in a wide variety of synthetically important reactions; when chiral ligands are used, many of these reactions are highly stereoselective. In the context of "green chemistry", the development of asymmetric Ln catalysts, and their recyclable use, is of increasing importance. This review gives an overview of the most recent developments in catalysis with lanthanide(II) and lanthanide(III) complexes.  相似文献   

2.
[Mn(IV)Mn(II)3] triangular units directed by the presence of tripodal alcohols self-assemble in the presence of azide and acetate ligands to form either a [Mn24] "wheel" or a [Mn32] "cube".  相似文献   

3.
The Cu(I)-catalyzed 1,3-cycloaddition of organic azides with terminal alkynes, the CuAAC "click" reaction is currently receiving considerable attention as a mild, modular method for the generation of functionalized ligand scaffolds. Herein we show that mild one-pot "click" methods can be used to readily and rapidly synthesize a family of functionalized bidentate 2-pyridyl-1,2,3-triazole ligands, containing electrochemically, photochemically, and biologically active functional groups in good to excellent yields (47-94%). The new ligands have been fully characterized by elemental analysis, HR-ESI-MS, IR, (1)H and (13)C NMR and in three cases by X-ray crystallography. Furthermore we have demonstrated that this family of functionalized "click" ligands readily form bis-bidentate Pd(II) complexes. Solution studies, X-ray crystallography, and density functional theory (DFT) calculations indicate that the Pd(II) complexes formed with the 2-(1-R-1H-1,2,3-triazol-4-yl)pyridine series of ligands are more stable than those formed with the [4-R-1H-1,2,3-triazol-1-yl)methyl]pyridine "click" ligands.  相似文献   

4.
A series of clathrate and metal complexes with cyclotriveratrylene-like molecular host ligands show a similar dimeric homomeric inclusion motif in which a ligand arm of one host is the intra-cavity guest of another and vice versa. This "hand-shake" motif is found in the trinuclear transition metal complex [Cu(3)Cl(6)(1)]CH(3)CN1.5 H(2)O in which 1 is tris(4-[2,2',6',2'-terpyridyl]benzyl)cyclotriguaiacylene; in the self-included M(4)L(4) tetrahedral metallo-supramolecular assembly [Ag(4)(2)(4)] (BF(4))(4) in which 2 is tris-(2-quinolylmethyl)cyclotriguaiacylene; in the 1D coordination chains [Ag(4)]ReO(4) CH(3)CN and [Ag(5)]SbF(6)3 DMFH(2)O in which 4 is tris(1H-imidazol-1-yl)cyclotriguaiacylene and 5 is tris{4-(2-pyridyl)benzyl}cyclotriguaiacylene; and in the acetone clathrate of tris{4-(2-pyridyl)benzyl-amino}cyclotriguaiacylene. Clathrates of ligands 2 and 5 do not show the same dimeric motif, although 2 has an extended homomeric inclusion motif that gives a hexagonal network.  相似文献   

5.
"Tritopic" picolinic dihydrazone ligands with tridentate coordination pockets are designed to produce homoleptic [3 x 3] nonanuclear square grid complexes on reaction with transition-metal salts, and many structurally documented examples have been obtained with Mn(II), Cu(II), and Zn(II) ions. However, other oligomeric complexes with smaller nuclearities have also been discovered and identified structurally in some reactions involving Fe(II), Co(II), Ni(II), and Cu(II), with certain tritopic ligands. This illustrates the dynamic nature of the metal-ligand interaction and the conformationally flexible nature of the ligands and points to the possible involvement of some of these species as intermediates in the [3 x 3] grid formation process. Examples of mononuclear, dinuclear, hexanuclear, heptanuclear, and nonanuclear species involving Fe(II), Co(II), Ni(II), and Cu(II) salts with a series of potentially heptadentate picolinic dihydrazone ligands with pyrazine, pyrimidine, and pyridine end groups are described in the present study. Iron and cobalt complexation reactions are complicated by redox processes, which lead to mixed-oxidation-state Co(II)/Co(III) systems when starting with Co(II) salts, and reduction of Fe(III) to Fe(II) when starting with Fe(III). Magnetic exchange within the polynuclear structural frameworks is discussed and related to the structural features.  相似文献   

6.
Some cis,cis,cis-RuX(2)(Me(2)SO)(2)(1,2-Me(2)Im)L complexes [L = 1,2-Me(2)Im (1,2-dimethylimidazole) or Me(3)Bzm (1,5,6-trimethylbenzimidazole), X = Cl or Br, and Me(2)SO = S-bonded DMSO] have been synthesized and their rotamers studied in CDCl(3). From 2D NMR data, cis,cis,cis-RuCl(2)(Me(2)SO)(2)(1,2-Me(2)Im)(Me(3)Bzm) has 1,2-Me(2)Im in position "a" (cis to both Me(2)SO's and cis to "b") and Me(3)Bzm in position "b" (trans to one Me(2)SO and cis to the other). There are two stable atropisomers [head-to-tail (HT, 84%) and head-to-head (HH, 16%), defining the aromatic H of Ru-N-C-H as head for both ligands]. Me(3)Bzm has the same orientation in both atropisomers. In this orientation, the unfavorable interligand steric interactions of Me(3)Bzm with the Me(2)SO and 1,2-Me(2)Im ligands appear to be countered by favorable electrostatic attraction between the delta+ N(2)CH moiety of Me(3)Bzm and the delta- cis Cl ligands. The 1,2-Me(2)Im lacks a delta+ N(2)CH group, and its orientation is dominated by steric effects of the 2-Me group. The NMR spectrum of cis,cis,cis-RuCl(2)(Me(2)SO)(2)(1,2-Me(2)Im)(2) is consistent with four rotamers in restricted rotation about both Ru-N bonds: two HH and two HT. 2D NMR techniques (NOESY and ROESY) afforded complete proton signal assignments. The ligand disposition could be assessed from the large chemical shift dispersion of some 1,2-Me(2)Im ligand signals (Delta 0.86-1.52 ppm) arising from cis-1,2-Me(2)Im shielding modulated by deshielding influences of the cis halides. The relative stability of the four rotamers correlates best with steric interactions between the 2-Me groups and the Me(2)SO ligands. The most favorable conformer (46%) is the HH rotamer with both 2-Me groups pointing away from the Me(2)SO ligands. The least favorable conformer (14%) was also HH, but the methyl groups in this case point toward the Me(2)SO ligands. In the HT conformers of intermediate stability ( approximately 20%), one 2-Me group is toward and the other is away from the Me(2)SO ligands. The exchange cross-peaks in the 2D spectra are unusually informative about the dynamic processes in solution; the spectra provide evidence that the rotamers interchange in a definite pattern of succession. Thus, all conceivable exchange pathways are not available. 1,2-Me(2)Im "b" can rotate regardless of the orientation of 1,2-Me(2)Im "a". 1,2-Me(2)Im "a" can rotate only when "b" has the orientation with its 2-Me group directed away from "a". Thus, 1,2-Me(2)Im "b" can switch 1,2-Me(2)Im "a" rotation on or off.  相似文献   

7.
The synthesis of novel well-defined alkyne side chain functional polymers featuring narrow molecular weight distributions (PDI = 1.09-1.17) by living radical polymerization is described. Grafting of protected and unprotected carbohydrates is achieved via either a C-6 or an anomeric azide (alpha or beta) onto these polymers by Cu(I)-catalyzed "click chemistry", providing a simple and efficient route to synthetic glycopolymers. The strategy provides an extremely powerful tool for the synthesis of libraries of materials that differ only in the nature of the sugar moiety presented on a well-defined polymer scaffold. A library of multivalent ligands were then prepared following a "coclicking" synthetic protocol, and the reactivity of these glycopolymers in the presence of concanavalin A and Ricinus communis agglutinin, model lectins able to selectively bind appropriate mannose and galactose derivatives, respectively, was assessed.  相似文献   

8.
The construction of Cu(II)-containing supramolecular chains is achieved by combining suitable anionic ligands (for controlling the coordination geometry and for creating a neutral building block) with four new bifunctional ligands containing a metal-coordinating pyridyl site and a self-complementary hydrogen-bonding moiety. Seven crystal structures are presented and in each case, the copper(II) complex displays a "paddlewheel" arrangement, with four carboxylate ligands occupying the equatorial sites, leaving room for the bifunctional ligand to coordinate in the axial positions. The supramolecular chemistry, which organizes the coordination-complexes into the desired infinite 1-D chains, is driven by a combination of N-H...N and N-H...O hydrogen-bonds in five of the seven structures.  相似文献   

9.
Employing two isomeric pyrazine-based ligands a [2 x 2] grid-type tetranuclear cobalt(III) complex, incorporating doubly deprotonated (La)2- ligands, and a "corner-type" mononuclear cobalt(III) complex, incorporating neutral H2Lp ligands in a zwitterionic form, have been synthesised and structurally characterised.  相似文献   

10.
Cristina Chamorro 《Tetrahedron》2004,60(49):11145-11157
Screening of a combinatorial CTV-based artificial, synthetic receptor library 1 {1-13, 1-13, 1-13} for binding of a variety d-Ala-d-Ala and d-Ala-d-Lac containing ligands (6-11) was carried out in phosphate buffer (0.1 N, pH=7.0). After screening and Edman sequencing, synthetic receptors were found containing amino acid sequences, which are either characteristic for binding dye labeled d-Ala-d-Ala or d-Ala-d-Lac containing ligands. For example, receptors capable of binding d-Ala-d-Ala containing ligands 6, 7, 9 and 11 contained—almost in all cases—at least one basic amino acid residue—predominantly Lys—in their arms. This was really a striking difference with the arms of the receptors capable of binding d-Ala-d-Lac containing ligands 8 and 10, which usually contained a significant number of polar amino acids (Gln and Ser), especially in ligand 8, but hardly any basic amino acids. Use of different (fluorescent) dye labels showed that the label has a profound, albeit not decisive, influence on the binding by the receptor. A hit from the screening of the CTV-library with FITC-peptidoglycan (6) was selected for resynthesis and validation.  相似文献   

11.
In this paper, we demonstrate a simple and general "dispersion-decomposition" approach to the synthesis of metal sulfide nanocrystals with the assistance of alkylthiol. This is a direct heating process without precursor injection. By using inorganic metal salts and alkylthiol as the raw materials, high-quality Ag(2)S, Cu(2)S, PbS, Ni(3)S(4), CdS, and ZnS nanocrystals were successfully synthesized. The mechanism study shows that the reaction undergoes two steps. A key intermediate compound, metal thiolate, is generated first. It melts and disperses into the solvent at a relatively low temperature, and then it decomposes into metal sulfide as a single precursor upon heating. This method avoids using toxic phosphine agent and injection during the reaction process. The size and shape of the nanocrystal can be also controlled by the concentration of the reactant and ligands. Furthermore, the optical properties and assembly of the nanocrystals have also been studied. This report provides a facile, direct-heating "dispersion-decomposition" approach to synthesize metal sulfides nanocrystals that has potential for future large-scale synthesis.  相似文献   

12.
Readily synthesised and functionalised di-1,2,3-triazole "click" ligands are shown to self-assemble into coordinatively saturated, quadruply stranded helical [Pd(2)L(4)](BF(4))(4) cages with Pd(II) ions. The cages have been fully characterised by elemental analysis, HR-ESMS, IR, (1)H, (13)C and DOSY NMR, DFT calculations, and in one case by X-ray crystallography. By exploiting the CuAAC "click" reaction we were able to rapidly generate a small family of di-1,2,3-triazole ligands with different core spacer units and peripheral substituents and examine how these structural modifications affected the formation of the [Pd(2)L(4)](BF(4))(4) cages. The use of both flexible (1,3-propyl) and rigid (1,3-phenyl) core spacer units led to the formation of discrete [Pd(2)L(4)](BF(4))(4) cage complexes. However, when the spacer unit of the di-1,2,3-triazole ligand was a 1,4-substituted-phenyl group steric interactions led to the formation of an oligomeric/polymeric species. By keeping the 1,3-phenyl core spacer constant the effect of altering the "click" ligands' peripheral substituents was also examined. It was shown that ligands with alkyl, phenyl, electron-rich and electron-poor benzyl substituents all quantitatively formed [Pd(2)L(4)](BF(4))(4) cage complexes. The results suggest that a wide range of functionalised palladium(II) "click" cages could be rapidly generated. These novel molecules may potentially find uses in catalysis, molecular recognition and drug delivery.  相似文献   

13.
Kim D  Paek JH  Jun MJ  Lee JY  Kang SO  Ko J 《Inorganic chemistry》2005,44(22):7886-7894
Aromatic molecular "clips" bearing two symmetrically bound platinum moieties have been prepared. The molecular "clip" 4 readily self-assembled with linear linkers such as 4,4'-bipyridyl, 1,4-bis[2-(4-isocyano-3,5-diisopropylphenyl)ethynyl]benzene, and nicotinic acid to form molecular rectangles. The overall dimensions of the rectangle 7 were 7.3 Angstroms x 15.3 Angstroms. The molecular "clip" also self-assembled with tritopic pyridyl and isocyanide ligands to form trigonal prismatic frameworks. The characterization of the supramolecules by multinuclear NMR, electrospray mass spectrometry, and X-ray crystal structures is also reported.  相似文献   

14.
New two-dimensional (2D) bismuth and three-dimensional (3D) lead based coordination polymers containing pyridine-2,5-dicarboxylate ligands (H(2)pydc) have been synthesized hydrothermally and characterized by single crystal X-ray diffraction. Bi(3)(μ(3)-O)(2)(pydc)(2)(Hpydc)(H(2)O)(2) (1), which crystallizes in the space group P1? (a = 8.7256(5) ?, b = 11.1217(7) ?, c = 14.0933(9) ?, α = 85.239(1)°, β = 98.582(1)°, γ = 71.106(1)°), has a 3D structure that contains Bi(6)O(4) clusters that connect into 2D sheets via linking ligands. The sheets form a 3D supramolecular structure via hydrogen bonding along the z-axis. Pb(pydc)(H(2)O) (2), which crystallizes in the space group P2(1)/c (a = 10.8343(14) ?, b = 11.2099(15) ?, c = 6.6573(9) ?, β = 90.697(2)°), contains 1D chains of corner-sharing distorted face capped trigonal prisms that are connected into a 3D framework via the pydc ligand. In addition, the ligands are hydrogen bonded to each other. Both 1 and 2 are single component "white" light emitting phosphors and are shown to exhibit "white" luminescence that covers a much wider spectral range than is observed for the as received H(2)pydc ligand.  相似文献   

15.
A series of phosphoramidite ligands was tested in the asymmetric hydrogenation of 4-arylsubstituted 1,3-dihydro-2H-benzodiazepine-2-ones and up to 52% ee was achieved. The effects of various factors (solvents, hydrogen pressure, and addition of phosphine ligands) on the hydrogenation were studied.  相似文献   

16.
The U-O(yl) triple bonds in the UO(2)(2+) aquo ion are known to be weakened by replacing the first shell water with organic or inorganic ligands. Weakening of the U-O(yl) bond may enhance the reactivity of "yl" oxygens and uranyl(VI) cation-cation interactions. Density functional theory calculations as well as previously published vibrational spectroscopic data have been used to study the origin of the U-O(yl) bond weakening in uranyl(VI) coordination complexes. Natural population analyses (NPA) revealed that the electron localization on the O(yl) 2p orbital is a direct measure of the U-O(yl) bond weakening, indicating that the bond weakening is correlated to the weakening of the U-O(yl) covalent bond and not that of the ionic bond. The Mulliken analysis gives poor results for uranium to ligand electron partitioning and is thus unreliable. Further analyses of molecular orbitals near the highest occupied molecular orbital (HOMO) show that both the σ and π donating abilities of the ligands may account for the U-O(yl) bond weakening. The mechanism of the bond weakening varies with coordinating ligand so that each case needs to be examined independently.  相似文献   

17.
The previously proposed concept of "inorganic metallocenes" of group 3 and rare-earth elements has been tested by preparing a series of novel disiloxanediolates with metals displaying different ionic radii. For the smaller scandium and yttrium, approximately planar arrangements of the disiloxanediolate frameworks with solvent and chloride ligands in trans positions were found. Thus, the compounds [{(Ph2SiO)2O}2{Li(DME)}2]ScCl(THF/DME) (2; DME=1,2-dimethoxyethane and THF=tetrahydrofuran) and [{(Ph2SiO)2O}2{Li(THF)2}2]YCl(THF) (3) can be described as heterobimetallic inorganic ring systems or metallacrown complexes with "in-plane" coordination of the metal. In contrast, "out-of-plane" geometries with cis coordination of additional ligands were identified in the praseodymium derivatives [{(Ph2SiO)2O}2{Li(THF)2}{Li(THF)}]Pr(micro-Cl)2Li(THF)2 (4) and [{(Ph2SiO)2O}2{Li(DME)}2]PrCl(DME) (5). These compounds can be viewed as analogues of the known metallocene derivatives (C5Me5)2Pr(micro-Cl)2Li(THF)2 and (C5Me5)2PrCl(THF). The molecular structures of 2-5 have been determined by X-ray diffraction.  相似文献   

18.
A series of flexible bis(9-anthryldiamine) ligands (L1-L3) linked with alkyl spacers of different chain length was synthesized and characterized, in order to investigate the coordination behavior of these diamine ligands with metal ions (Zn2+, etc.) based on fluorescence measurements. The results showed that, in the case of anthryldiamine ligands bearing two- or four-carbon links, the zinc ion induced a chelation-enhanced fluorescence (CHEF) effect in aqueous media, while a trace amount of water could selectively quench the blue emission of the Zn(II) complex with a three-carbon-linked ligand (1). Meanwhile, the introduction of more water (concentration >11 %) resulted in the formation of a new green luminescent species; the luminescence intensity was enhanced stepwise to a maximum with addition of approximately 30 % water in THF solution. The peak position (centered at approximately 500 nm) and the lifetime measurement (tau=19.59 ns) indicated that the green luminescence was attributable to a novel edge-to-face dimeric conformation ("T-shaped" conformation) of anthracene, and not to the more common face-to-face dimeric conformation. Accordingly, 1H NMR spectroscopic studies in nonaqueous or aqueous solution confirmed this T-shaped conformation, which is consistent with the results of single-crystal X-ray structure analysis and solid-state photoluminescence studies.  相似文献   

19.
The reaction of molybdocenedihydride with two equivalents of [Bi(OtBu)(3)] proceeds via alcohol elimination and provides the compound [Cp(2)Mo{Bi(OtBu)(2)}(2)] (1), which contains two Mo--Bi metal bonds, in good yields. If the two reagents are employed in a 1:1 ratio continuative condensation reactions occur. These initially lead to [{Cp(2)Mo}(2){mu-Bi(OtBu)}(2)] (2), which, however, is very unstable in solution and decomposes via additional alcohol elimination: Complex-induced proximity effects facilitate the cleavage of C--H bonds within the cyclopentadienyl ligands by the residual alkoxide ligands, so that spontaneously two further equivalents of alcohol are released, thereby yielding two isomeric compounds 3 and 4 with Cp ligands bridging Mo--Bi metal bonds: The first isomer (3) contains two mu(2)-eta(5):eta(1)-C(5)H(4) ligands, the second isomer (4) contains one bridging mu(3)-eta(5):eta(1):eta(1)-C(5)H(3) ligand. The binding of these ligands to molybdenum and bismuth atoms at the same time is made possible through "bent bonds" between the bismuth and certain carbon centres. These unusual bonding situations were analysed by means of calculations based on density functional theory (DFT), the atoms in molecules (AIM) theory, natural bond order (NBO) considerations and the electron localisation function (ELF). According to the results the bonds can be understood in terms of carbanionic centres interacting with bismuth cations (i.e. closed-shell interactions). The formation of these bonds and the thermodynamics/kinetics involved on going from 2 to 3 and 4 were also studied by theoretical methods, so that the product formation is rationalised. The crystal structures of all four new compounds were determined. These structures but also the properties and mechanisms of formation are discussed against the background of the corresponding results obtained while studying the system [(Me)Cp(2)MoH(2)]/[Bi(OtBu)(3)].  相似文献   

20.
London forces are omnipresent in nature and relevant to molecular engineering. Proper tuning of their energetic contribution may stabilize molecular aggregates, which would be otherwise highly unstable by virtue of other overwhelming repulsive terms. The literature contains a number of such noncovalently bonded molecular aggregates, of which the "binding mode" has never been thoroughly settled. Among those are the emblematic cationic complexes of tetrakis(isonitrile)rhodium(I) studied by a number of researchers. The propensity of these complexes to spontaneously produce oligomers has been an "open case" for years. For the dimer [(PhNC)(4)Rh](2)(2+), one of the archetypes of such oligomers, density functional theory methods (DFT-D3) and wave function based spin-component-scaled second-order M?ller-Plesset perturbation theory (SCS-MP2) quantum chemical calculations indicate that when the eight isonitrile ligands arrange spatially in an optimal π-stacked fashion, the energy due to dispersion not only overcomes coulombic repulsion but also the entropy penalty of complex formation. This central role of long-range electron correlation explains such cation-cation attractive interactions. Furthermore, the present findings relativize the role of the metal-metal "d(8)-d(8)" interactions, which are present on a relatively small scale compared to the effects of the ligands; d(8)-d(8) interactions represent about 10-15% of the total dispersion contribution to the binding energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号