首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
Sevgi Güney 《Electroanalysis》2023,35(7):e202200477
The electrochemical sensing of ornidazole (OR) was achieved with a highly selective sensor fabricated by a combination of an electrochemically reduced graphene oxide (ERGO) and molecularly imprinted polydopamine (PDA). The sensor (OR-imp@PDA/ERGO/GCE) was synthesized by electrochemical polymerization of dopamine (DA) on ERGO modified glassy carbon electrode (GCE). The analytical response of the sensor changed linearly with OR concentration varying from 1.5 × 10−9 M to 1.0 × 10−8 M and 1.0 × 10−8 M to 2.0 × 10−7 M, and the detection limit was defined as 1.1 × 10−9 M. The proposed sensor ensured the highly sensitive detection of OR concentration because of the advantages of ERGO and molecularly imprinted PDA.  相似文献   

2.
《中国化学会会志》2018,65(6):743-749
A glassy carbon electrode (GCE) modified with a copper‐based metal‐organic framework (MOF) [HKUST‐1, HKUST‐1 = Cu3(BTC)2 (BTC = 1,3,5‐benzenetricarboxylicacid)] was developed as a highly sensitive and simple electrochemical sensor for the determination of dopamine (DA). The MOF was prepared by a hydrothermal process, and the morphology and crystal phase of the MOF were characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD), respectively. Meanwhile, the electrochemical performance was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the modified electrode showed excellent electrocatalytic activity and high selectivity toward DA. The linear response range was from 5.0 × 10−7 to 1.0 × 10−4 M and the detection limit was as low as 1.5 × 10−7 M. Moreover, the electrochemical sensor was used to detect DA in real samples with excellent results. MOF‐based sensors hold great promise for routine sensing applications in the field of electrochemical sensing.  相似文献   

3.
Summary: The Sonogel-Carbon electrode is a special class of sol-gel electrode that exhibits favourable mechanics and electric properties that can be used as electrochemical sensors. In this study, a Sonogel-Carbon modified with L-Cysteine was used to prepare a novel electrochemical sensor. The objective of this new electrode modification was to seek new electrochemical performances for thedetection of dopamine (DA). The influence of natural interferents such as Ascorbic Acid (AA) and Uric Acid (UA) was explored. The concentration of theses strong interferent was increased to a certain level in order to determine to what extends AA and UA may disturb the neurotransmitters electroanalysis. Our work showed that the modified electrode offers interesting analytical performances such as: (a) Fast and linear responses towards the neurotransmitter dopamine: The differential pulse voltammetry current peak was linear with the DA concentration in the range 2 · 10−7 M to 10−5 M with a detection limit of 4 · 10−8 M (S/N = 3). (b) Simultaneous detection and well-resolved signals between the DA, AA and UA: The new sensor could sensitively and separately determine DA in the presence of 1000 and 900 times higher concentrations of AA and UA respectively. Optimization of parameters such as the amount of L-cysteine in the Sonogel-Carbon mixture, interference effect, perm-selectivity and mechanical stability of the sensor are discussed. A comparison with a SAM L-Cysteine/gold electrode was also made. On the other hand the new Sonogel modified electrode has been applied to the determination of dopamine in urine samples with satisfactory results. With good selectivity and sensitivity, the proposed sensor is a simple tool for the selective detection of DA, AA and UA in biological samples.  相似文献   

4.
We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2×10−6 M to 0.8×10−3 M with a correlation coefficient of 0.9927. In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution. It should be noted that potential scanning is a very effective approach for DA extraction, and surface modification of the electrochemical transducer with functional monomers is responsible for the development of MIPs-based highly sensitive biomimetic sensor.  相似文献   

5.
A [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol (TMN-2-ol) film modified platinum (Pt) electrode has been fabricated by the electrochemical oxidation in acetonitrile solution. The modified surface was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). The prepared Pt electrode can be used as a functional interface to sensitive and selective determination of dopamine (DA) in the presence of uric acid (UA) and ascorbic acid (AA) by square wave voltammetry (SWV) method. The limit of detection (LOD) and limit of quantification (LOQ) of DA were 9.25 × 10−8 and 2.78 × 10−7 M, respectively. Linear range of DA was found to be between 3.95 × 10−7 and 4.19 × 10−6 M.  相似文献   

6.
The authors describe the preparation of a molecularly imprinted polymer (MIP) film on the surface of electrodeposited hollow nickel nanospheres (hNiNS), and the use of this nanocomposite in an electrochemical sensor for dopamine (DA). The use of the 3-dimensional hNiNS as a support material enlarges the sensing area and conductivity, while the MIP film warrants improved selectivity for DA. Quantification based on the “MIP/gate effect” was performed by employing hexacyanoferrate as the electrochemical probe. Scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy were applied to characterize the sensor materials. The electropolymerization condition such as pH value, functional monomer and ratio of template to monomer were optimized. By using dopamine (DA) as a model analyte, the sensor, if operated at 0.1 V vs. SCE, has fairly low detection limit of 1.7?×?10?14 M (at an S/N ratio of 3), two wide assay ranges of 5?×?10?14 to 1?×?10?12 M and 1?×?10?12 to 5?×?10?11 M, and superb selectivity.
Graphical Abstract An electrochemical sensor platform with a novel composite film composed of hollow nickel nanospheres (hNiNS) and molecularly imprinted polymer (MIP) was developed via a facile double-elecrodeposition method. The synergistic effects of hNiNS and MIP guarantee the ultrahigh sensitivity (down to 10?2 ppt) and selectivity of the sensor.
  相似文献   

7.
Saxagliptin (Saxa) belongs to a new generation of antidiabetic pharmaceutical compounds used in combination with healthy diet and exercise to lower blood glucose levels in patients with type 2 diabetes mellitus (T2DM). In this work, we report for the first time a molecularly imprinted polymer (MIP) based electrochemical sensor for the determination of Saxa. Computational calculations were performed, based on which five MIPs were synthesized using Saxa as a template, itaconic acid as a monomer, crosslinked with ethylene glycol dimethacrylate and Di methyl sulfoxide (DMSO) as a porogen with different ratios. Non-covalent interaction (NCI) analysis has been also conducted, and the obtained isosurface analysis was used for graphical visualization of NCI that could occur in real space as well as for the discrimination between hydrogen bond interaction, Van Der Waals attraction and spatial repulsion. The optimized polymer was incorporated as a modifier for designing an electrochemical sensor comprising MIP and Multiwalled carbon nanotubes (MwCNT) within carbon paste electrode (CPE). The operational variables including incubation time, pH, scan rate, and accumulation time were optimized. The sensor showed linearity over the concentration range (1 × 10−9–1 × 10−15 M) with low limit of detection (LOD) 8 × 10−16 and 2 × 10−16 M on using DPV and EIS, respectively. The sensor was successfully applied for pharmaceutical formulations, urine, and human serum samples with recovery range between 97.45–100.64 %.  相似文献   

8.
A chemically modified electrode was successfully fabricated by means of depositing a thin layer of nickel hexacyanoferrate (NiHCF) on an amine adsorbed graphite paraffin wax composite electrode using a new approach. The electrode was further coated with Nafion. The electrochemical characteristics of the modified electrode were studied using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The modified electrode catalyzed dopamine (DA) oxidation in the concentration range of 1.5×10?6 to 1.2×10?3 M without the interference from ascorbic acid (AA). A detection limit of 4.9×10?7 M was obtained for DA in the presence of AA with a correlation coefficient of 0.9972 based on S/N=3. Flow injection analysis was used for the determination of dopamine with excellent reproducible results. The analytical utility of the sensor was evaluated for detection of DA in urine.  相似文献   

9.
We have developed a molecularly imprinted polymer (MIP) electrochemical sensor for entacapone (ETC) based on an electropolymerised polyphenylenediamine (Po-PD) on a glassy carbon electrode (GCE) surface. The direct electropolymerisation of the o-phenylenediamine monomer (o-PD) was carried out with ETC as a template. The steps of electropolymerization process, template removal and binding of the analyte were tested by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3−/[Fe(CN)6]4 − as a redox probe. The operation of the sensor has been investigated by differential pulse voltammetry (DPV). Under optimal experimental conditions, the response of the DPV was linearly proportional to the ETC concentration between 1.0×10−7 and 5.0×10−6 M ETC with a limit of detection (LOD) of 5.0×10−8 M. The developed sensor had excellent selectivity without detectable cross-reactivity for levodopa and carbidopa. The MIP sensor was successfully used to detect ETC in spiked human serum samples.  相似文献   

10.
《Electroanalysis》2017,29(7):1794-1804
The sensitivity enhancing properties of sodium dodecyl sulphate (SDS) and multi‐walled carbon nanotubes (MWCNTs) were associated to construct a nanosensor based on carbon paste electrode (CPE) by adopting drop cast method. The drop cast method makes use of minimum modifier and the entire modified surface of the sensor is available for the analyte. Surface characterization of the electrodes was carried out using FE‐SEM and EDX. EIS was used for the electrochemical characterization. We report for the first time the electrochemical analysis based on the oxidation of the ‐OH group of a novel drug, alpha‐hydrazinonitroalkene ( I ) which was found to have antibacterial and antimicrobial properties. The electron transfer kinetic parameters such as the charge transfer coefficient α and heterogeneous rate constant k′ were calculated and they have been found to be 0.64 and 9.62 × 10−2 cm s−1 respectively. The linear response ranges for ( I ) obtained at this sensor are 1.0 × 10−7 M − 7.0 × 10−7 M and 1.0 × 10−6 M – 4.5 × 10−5 M with a detection limit of (7.03 ± 0.41) × 10−8 M (S/N=3). The interference study suggested that the sensor was free from 1000‐fold excess of UA in the determination of ( I ). It was important to note that the sensor completely eliminated Ascorbic acid (AA) signal which offered a significant analytical advantage for the determination of the drug at this sensor. The practical usefulness of the modified sensor was demonstrated by the analysis of ( I ) in blood serum.  相似文献   

11.
A novel route for the fabrication of neodymium hexacyanoferrate (NdHCF) modified glassy carbon electrodes (GCE) was proposed. The morphological characterization of NdHCF was examined by scanning electron microscopy (SEM) and Fourier transform infrared spectra (FTIR). The performances of the NdHCF/GCE were characterized with cyclic voltammetry and differential pulse voltammograms (DPV). The modified electrode showed excellent electrocatalytic effect and high stability toward the electrochemical oxidation of dopamine (DA) in phosphate buffer solution (pH 5.5) with a diminution of the anodic overpotential of 155 mV. The anodic peak currents increased linearly with the concentration of DA from 5.0×10?7 to 6.0×10?4 M with a detection limit of 1.0×10?8 M (S/N=3). The most important is that the modified electrode could be used for the determination of DA in the presence of an ascorbic acid concentration as large as 100‐fold that of DA. The proposed method was used to determine DA in DA‐hydrochloride injection and showed excellent sensitivity and recovery. The ease of fabrication, high stability, and low cost of the modified electrode are the promising features of the proposed sensor.  相似文献   

12.
A modified electrode was fabricated by electrochemically deposition of Pt nanoparticles on the multiwall carbon nanotube covered glassy carbon electrode (Pt nanoparticles decorated MWCNT/GCE). A higher catalytic activity was obtained to electrocatalytic oxidation of ascorbic acid, dopamine, and uric acid due to the enhanced peak current and well‐defined peak separations compared with both, bare and MWCNT/GCE. The electrode surfaces were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). Individual and simultaneous determination of AA, DA, and UA were studied by differential pulse voltammetry. The detection limits were individually calculated for ascorbic acid, dopamine, and uric acid as being 1.9×10?5 M, 2.78×10?8 M, and 3.2×10?8 M, respectively. In simultaneous determination, LODs were calculated for AA, DA, and UA, as of 2×10?5 M, 4.83×10?8 M, and 3.5×10?7 M, respectively.  相似文献   

13.
《Electroanalysis》2017,29(11):2551-2558
The electrochemical oxidation of Sotalol (SOT) based on Tetrazolium Blue (TB)/gold nanoparticles (GNPs)‐modified carbon paste electrodes (CPE) have been studied in the presence of sodium lauryl sulphate (SLS). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and electrochemical impedance spectroscopy (EIS) techniques have all been utilized within this study. GNPs and TB have a synergetic effect‐giving rise to highly improved electrochemical responses and provide an advantageous platform for the basis of an electrochemical sensor with excellent performance. The experimental parameters, electrodeposition time, pH and scan rate have all been examined and optimized. The sensing of SOT via DPV is found to exhibit a wide linear dynamic range of 1.0×10−7–7.5×10−4 M in pH 2. LOD and LOQ were calculated and found to correspond to 2.5×10−8 M and 8.3×10−8 M, respectively. The suggested sensor has been used successfully for SOT determination in pharmaceutical samples and human urine as real samples. Satisfactory recoveries of analyte from these samples are demonstrated indicating that the suggested sensor is highly suitable for clinical analysis, quality control and a routine determination of SOT in pharmaceutical formulations.  相似文献   

14.
《Electroanalysis》2018,30(2):320-327
A novel molecularly imprinted polymer (MIP) photoelectrochemical sensor was fabricated for the highly sensitive and selective detection of triclosan. The MIP photoelectrochemical sensor was fabricated using graphite‐like carbon nitride (g‐C3N4) and gold nanoparticles (AuNPs) as photoelectric materials. The MIP/g‐C3N4‐AuNPs sensor used photocurrent as the detection signal and was triggered by ultraviolet light (UV‐Light 365 nm). g‐C3N4‐AuNPs was immobilized on indium tin oxide electrodes to produce the photoelectrochemically responsive electrode of the MIP/g‐C3N4‐AuNPs sensor. A MIP layer of poly‐o‐phenylenediamine was electropolymerized on the g‐C3N4‐AuNPs‐modified electrode to act as the recognition element of the MIP/g‐C3N4‐AuNPs sensor and to enable the selective adsorption of triclosan to the sensor through specific binding. Under optimal experimental conditions, the designed MIP/g‐C3N4‐AuNPs sensor presented high sensitivity for triclosan with a linear range of 2×10−12 to 8×10−10 M and a limit of detection of 6.01×10−13 M. Moreover, the MIP/g‐C3N4‐AuNPs sensor showed excellent selectivity. The sensor had been successfully applied in the analysis of toothpaste samples.  相似文献   

15.
Song  Wei  Chen  Yu  Xu  Juan  Yang  Xiao-Rong  Tian  Dan-Bi 《Journal of Solid State Electrochemistry》2010,14(10):1909-1914
Molecularly imprinted polymers (MIPs) have been applied as molecular recognition elements to chemical sensors. In this paper, we combined the use of MIPs and electropolymerization to produce a sensor which was capable of detecting dopamine (DA). The MIP electrode was obtained by electrocopolymerization of o-phenylenediamine and resorcinol in the presence of the template molecular DA. The MIP electrode exhibited a much higher current response compared with the non-imprinted electrode. The response of the imprinted sensor to DA was linearly proportional to its concentration over the range 5.0 × 10−7-4.0 × 10−5 M. The detection limit of DA is 0.13 μM (S/N = 3). Moreover, the proposed method could discriminate between DA and its analogs, such as ascorbic acid and uric acid. This method was successfully applied to the determination of DA in dopamine hydrochloride injection and healthy human blood serum. These results revealed that such a sensor fulfilled the selectivity, sensitivity, sped, and simplicity requirements for DA detection and provided possibilities of clinical application in physiological fields.  相似文献   

16.
A sensitive and selective method of analysis was constructed by the the combination of praseodymium oxide and carbon nanotubes. The charge transfer resistance (Rct) values of 109 in 1 × 10−3 M K3[Fe(CN)6] and 79 Ω in 5 × 10−6 M dopamine indicate that Pr6O11@MWCNTs/GCE enables an excellent electron pathway between electrolyte and electrode. The platform was successfully applied for the determination of dopamine in the presence of tramadol, paracetamol and ascorbic acid. The platform exhibited a remarkable decrease in ▵Ep for DA. A dynamic linear range from 1.2 × 10−9 M to 1.8 × 10−5 M was obtained with an LOD of 1.0 × 10−10 M. Such a sensitive and selective method of analysis makes Pr6O11@MWCNTs/GCE of high interest to observe trace level of DA with good accuracy and precision.  相似文献   

17.
A novel urea electrochemical sensor was constructed based on chitosan molecularly imprinted films which were prepared by potentiostatic electrodeposition of chitosan in the presence of urea followed by eluting with 0.1 M KCl. Various techniques were carried out to investigate the formation of molecularly imprinted polymer (MIP) films and the performance of the sensor. According to our expectation, the urea MIP electrochemical sensor showed excellent selectivity to urea among the structural similarities and co‐existences, high linear sensitivity to urea in the range from 1.0×10?8 to 4.0×10?5 M with a detection limit of 5.0×10?9 M. Furthermore, the recovery ranged from 96.3 % to 103.3 % and therefore offered great potential for clinical diagnosis applications.  相似文献   

18.
A very effective electrochemical sensor for the analysis of propranolol was constructed using TiO2/MWCNT film deposited on the pencil graphite electrode as modifier. The modified electrode represented excellent electrochemical properties such as fast response, high sensitivity and low detection limit. The proposed sensor showed an excellent selective response to propranolol in the presence of foreign species and other drugs. The electrochemical features of the modified electrode were investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) technique which indicated a decrease in resistance of the modified electrode versus bare PGE and MWCNT/PGE. The surface morphology for the modified electrode was determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). Differential pulse technique (DPV) was used to determine propranolol which showed a good analytical response in the linear range of 8.5×10−8-6.5×10−6 M with a limit of detection 2.1×10−8 M. The TiO2/MWCNT/PGE sensor was conveniently applied for the measurement of propranolol in biological and pharmaceutical media.  相似文献   

19.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

20.
The presence of profenofos (PFF) in food has been strictly limited by legislation due to its genotoxic and toxic effects on health. It is therefore very important to establish simple and rapid analytical methods to detect traces of this insecticide. A reusable molecularly imprinted polypyrrole MIP(O-PPy) on a glassy carbon electrode (GCE) has been developed to measure PFF. The PPy was polymerized by cyclic voltammetry (CV) in the presence of template molecules (PFF) in an acidic solution on a GCE. The various experimental parameters such as film thickness, analyte/monomer ratio, and removal/rebinding requirements were examined and optimized. The signal of the redox probe (ferrocyanide/ferrocyanide) was used for the electrochemical detections. All steps of the sensor manufacturing, removal/rebinding of template molecules, and response to different PFF concentrations were tested by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The MIP sensor was able to detect PFF in the linear ranges of 1.0×10−9 to 1.0×10−6 M and 1.0×10−9 to 5.0×10−6 M, with detection limits, a signal-to-noise ratio (S/N) of three was used to estimate LOD, of about 1 nM using DPV and EIS, respectively. The MIP (PPy) GCE provided excellent PFF recognition performance and was successfully used to quantify PFF in sweet pepper samples, yielding recoveries not greater than 108 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号