首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Two samples of Napoleon's hair were received for determination of arsenic, mercury and other trace elements by INAA. Before sample irradiation, the hairs were washed following the IAEA washing procedure. Two standard reference materials of GBW09101 (human hair) and NIST/SRM1572 (citrus leaves) were analyzed along with Napoleon's hair for quality control. Standardization was conducted by applying the k 0-method implemented in the program MULTINAA. The contents of arsenic and mercury as well as three additional elements chromium, antimony and zinc in Napoleon's hair are reported. Compared to the present normal levels, all of the determined elements in Napoleon's hair, except the mercury, are found to be irregular.  相似文献   

2.
The use of thek 0-standardization method in instrumental neutron activation analysis gives good accuracy and precision. The analysis time can be reduced drastically by employing software for thek 0-standardization calculations. In this work samples were irradiated in a TRIGA reactor and the gamma spectrum was analysed by Sampo 90 and thek 0-standardization by the KAYZERO/SOLCOI code (DSM Research). The efficiency measurement and the peak to total ratio at the reference and other geometries were measured and tested for their accuracy by analysing some reference materials. Reference materials such as SRM 1572 (Citrus leaves), SRM 1573 (Tomato leaves), SRM 1575 (Pine needles), IAEA Soil-7 (Soil) and SRM 1646 (Estuarine sediment) were analysed for the major, minor and trace element contents. The results were in good agreement with the certified or literature values. The recently released IAEA 140 (Sea plant homogenates) was also analysed for 28 elements.  相似文献   

3.
The use of thek 0-standardization method in instrumental neutron activation analysis gives good accuracy and precision. The analysis time can be reduced drastically by employing software for thek 0-standardization calculations. In this work samples were irradiated in a TRIGA reactor and the gamma spectrum was analysed by Sampo 90 and thek 0-standardization by the KAYZERO/SOLCOI code (DSM Research). The efficiency measurement and the peak to total ratio at the reference and other geometries were measured and tested for their accuracy by analysing some reference materials. Reference materials such as SRM 1572 (Citrus leaves), SRM 1573 (Tomato leaves), SRM 1575 (Pine needles), IAEA Soil-7 (Soil) and SRM 1646 (Estuarine sediment) were analysed for the major, minor and trace element contents. The results were in good agreement with the certified or literature values. The recently released IAEA 140 (Sea plant homogenates) was also analysed for 28 elements.  相似文献   

4.
A novel non-chromatographic method for the pre-concentration and determination of trace methyl mercury in water samples has been proposed. This method included two main steps: (1) The methyl mercury in sample solution was adsorbed on PDMS of the Fe/SiO2/PDMS bed enrichment column; (2) the analyte was thermally desorbed from the enrichment column and pyrolysed to Hg0 in an iron particle bed pyrolysis column by using electromagnetic induction heating technique, and then detected by an on-line coupled atomic fluorescence detector. Several factors affecting the enrichment column preparation and concentration procedure have been investigated and optimised. Under optimal condition, the detection limit (3σ) was 0.2 ng L–1, along with relative standard deviations of 2.4% (10 ng L–1, N = 11) for the repeatability study. The enrichment factor obtained was 108. The two standard reference materials (GBW08675, GBW10029) were analysed to validate the present method. This method was successfully applied to the determination of ng L–1 methyl mercury in water samples.  相似文献   

5.
This study presents the results obtained in the application of the k 0-standardization method at the Neutron Activation Analysis Laboratory at IPEN (LAN-IPEN), for biological sample analysis, by using the k0_IAEA software, provided by the International Atomic Energy Agency (IAEA). The thermal to epithermal flux ratio f and the shape factor α of the epithermal flux distribution of the IEA-R1 nuclear reactor of IPEN were determined for the pneumatic irradiation facility and one selected irradiation position, for short and long irradiations, respectively. To obtain these factors, the “bare triple-monitor” method with 197Au–96Zr–94Zr was used. To evaluate the accuracy of the results, bias (%) and E n-number test were applied to the results obtained in the analysis of the biological reference materials NIST SRM 1547 peach leaves, INCT-MPH-2 mixed polish herbs and NIST SRM 1573a tomato leaves. Bias (%), for most elements, ranged from 0 to 30 %, in relation to certified values. E n-number values showed that, with few exceptions (Na in NIST SRM 1547 and NIST SRM 1573a, and Al, Cr, Sc and Zn in INCT-MPH-2), the results were within a 95 % CI. These results pointed to the possibility of using the k 0-INAA method with the k0_IAEA software for analysis of biological samples at LAN-IPEN.  相似文献   

6.
The k 0-standardization method of NAA is known as one of the most remarkable progress of NAA with its many advantages. Recently, our laboratory is highly involved in various areas of application of k 0-NAA. This paper focuses on the application of the k 0-NAA method in Nutritional and Health-Related Environmental field. Tobacco holds a leading position among different commodities of human consumption. The adverse health effects of toxic and trace elements in tobacco smoke on smokers and non-smokers are a special concern. In the present study, the concentration of 24 trace elements in cigarette tobacco of five different brands of Algerian and American cigarettes have been determined by k 0-based INAA method. The results were compared with those obtained for samples from Iranian, Turkish, Brazilian and Mexican cigarettes tobacco. To evaluate the accurate of the results the SRM IAEA-140/TM was executed. The analytical results showed that the relative error of most of the elements was less than 10%.  相似文献   

7.
《Analytical letters》2012,45(12):1978-1990
A novel absorbent was prepared by sodium dodecyl sulfonate (SDS)-modified activated carbon (SDS-AC) and was employed as the microcolumn packing material for separation/preconcentration of trace Cd(II). The method based on Cd(II) was quantitatively retained by SDS-AC sorbent, which entailed cation exchange nature and negative charged surface, facilitating favorable retention of positively charged ions. The retained Cd(II) was effectively recovered with elution by 1 mol · L?1 HNO3, and the eluent was quantified by electrothermal atomic absorption spectrometry (ET-AAS). Under the optimized conditions, the limit of detection (LOD) for Cd(II) was 3 ng · L?1 with the consumption of 20.0 mL sample solution. The relative standard deviation (RSD) for ten replicate measurements of 50 ng · L?1 Cd(II) was 2.9%. The developed technique was demonstrated for the determination of trace Cd(II) in water samples and the recoveries for spiked samples were found to be in the range of 94.9–107.2%. For validation, two certified reference materials of water samples (GBW08607 and GBW08608) were analyzed, and the results obtained were in good agreement with the certified values.  相似文献   

8.
Medicinal herbs are often used as alternative medicines for healing and controlling some diseases in the world. This study focuses on the content of heavy and trace elements of some widely consumed herbs in Libya. Nine most popular herbs were analyzed by k 0-instrumental neutron activation analysis. All the samples, SRM and flux monitors were irradiated for 7 and 10 hours under thermal neutron flux of 1.3·1013 cm−2·s−1 at Tajoura nuclear reactor. In total, 33 elements were analyzed in different herbs. The variations in the concentration of the elements are attributed to soil composition and the climate in which the plant grows. The study showed that the toxic elements found in the samples were below the levels prescribed by health regulations. The precision and the accuracy of the results were evaluated by analyzing the reference materials Pine Needles SRM 1575 and Citrus Leaves SRM1572.  相似文献   

9.
A procedure for measuring trace amounts of Li and Be in different types of samples has been studied using a 12.5 MeV14N beam. At this energy the principal nuclear reactions are6Li(14N, d)18F,7Li(14N, t)18F, and9Be(14N, αn)18F. Detection limit for destructive analysis for either beryllium or lithium has been calculated at 300 ppb with a determination limit of 5 ppm for an irradiation with a beam of 1 μA·h/cm2. Destructive analysis was performed on CANMET SY-2 and USGS BCR-1 (rock samples 1–10 ppm Be). Non-destructive analysis for beryllium and lithium was performed on NBS SRM 610 (500 ppm trace element glass), NBS 612 (50 ppm trace element glass), and NBS SRM 181 (Spodumene ore, 6.4% Li2O). Detection limit of 2 ppm has been calculated for nondestructive analysis of either lithium or beryllium.  相似文献   

10.
We have developed a method for the determination of trace levels of the rare earth elements La, Eu, and Yb in biological and environmental samples. It is based on solidified floating organic drop microextraction using 1-(2-pyridylazo)-2-naphthol (PAN) as a chelator, followed by electrothermal vaporization (ETV) and quantification by inductively coupled plasma mass spectrometry. PAN also acts as a modifier in ETV. The effects of pH, amount of PAN, extraction time, stirring rate, volume of sample solution, and temperature program were examined. Under optimized conditions, the detection limits are 2.1, 0.65 and 0.91 pg mL?1 for the elements La, Eu and Yb, respectively. The relative standard deviations are <6.0 % (c?=?0.1 ng mL?1, n?=?9). When applied to the analysis of (spiked) natural water samples, the recoveries range from 92 to 105 %. The accuracy was validated with certified reference materials (combined sample of branch and leaf of shrub: GBW 07603 and human hair: GBW 07601), and the results were in good agreement with the certified values.
Figure
?Solidified floating organic drop microextraction was combined with ETV for ICP-MS. ?PAN acted as both a chelating agent and a chemical modifier. ?The method was used for analysis of rare earth elements in real samples. ?The method has the merits of low detection limit, good precision and accuracy.  相似文献   

11.
Activated carbon was chemically modified with 4-(8-hydroxyquinoline-azo)benzamidine and used for separation and preconcentration of trace amounts of Pb(II) in environmental samples by solid-phase extraction prior to the measurement by inductively coupled plasma atomic emission spectrometry. The effects of pH, shaking time, eluent concentration and volume, sample flow rate and potential interfering ions were studied. Under the optimum conditions, the enrichment factor was 100, the detection limits (3ó) is 0.43 ng?mL?1, and the relative standard deviations are <2.1% (n?=?8). The adsorption capacity of the sorbent is 53.58 mg of lead(II) per gram of the material. The sorbent was successfully applied to the preconcentration of trace Pb(II) in the reference materials GBW 08301 (river sediment) and GBW 08302 (Tibet soil). The recovery of lead(II) from Yellow river water, Huangshui water, and tap water is in range of 99.3–101.6%.  相似文献   

12.
A microwave digestion method in a closed vessel was developed for the determination of trace metals in atmospheric aerosols using inductively coupled plasma mass spectrometry (ICP-MS). A recovery study for the elements V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, and Pb was conducted using multi-elemental standard solutions, NIST 1633b Trace Elements in Coal Fly Ash, and NIST 1648 Urban Particulate Matter. A simple digestion method using only HNO3/H2O2 gave good recoveries (90%–108%) for all elements except Cr in SRM 1648, but yielded low recoveries for SRM 1633b. A more robust method using HNO3/H2O2/HF/H3BO3 yielded higher recoveries (82%–¶103%) for the lighter elements (V – Zn) in SRM 1633b, and improved the Cr recovery in SRM 1648, but decreased the Se recovery in both SRMs. A comparative analysis of aerosol samples obtained at a remote mountain location Nathiagali, Pakistan (2.5 km above mean sea level), and Mayville, New York, downwind from the highly industrialized Midwestern United States, was carried out using Instrumental Neutron Activation Analysis (INAA) for the elements Cr, Mn, Fe, Co, Zn, As, Se, and Sb. The simple digestion method yielded excellent agreement for Cr, Fe, Zn, As, Se, and Sb, with slopes of the ICP-MS vs. INAA regressions of 0.90–1.00 and R2 values of 0.96–1.00. The regressions for Mn and Co had slopes of 0.82 and 0.84 with R2 values of 0.83 and 0.82, respectively. Addition of HF/H3BO3 did not improve the correlation for any of the elements and degraded the precision somewhat. The technique provides sensitivity and accuracy for trace elements in relatively small aerosol samples used in atmospheric chemistry studies related to SO2 oxidation in cloud droplets. The ability to determine concentrations of a very large number of elements from a single analysis will permit source apportionment of various trace pollutants and hence strategies to control the sources of air pollution. This is particularly important as the health effects of particulate matter are increasingly recognized.  相似文献   

13.
Certified alloys of Ni–Cu based, Fe based and Cu–Sn based were analysed by semi-absolute, standardless k 0-instrumental neutron activation analysis (k 0-INAA) and flame atomic absorption spectrophotometry (FAAS) aiming at evaluating their comparative performances. In k 0-INAA measurements, the irradiations were performed at miniaturized neutron source reactor having thermal neutron flux of about 1 × 1012 cm?2 s?1. The experimentally optimized parameters for INAA suggested a maximum of three irradiations for the quantification of 21 elements within 5 days. The same experiments also produced quantitative results of 13 elements not reported in the certificates of the reference materials. AAS was, however, unable to determine any of those elements. Accuracy of the two techniques was assessed by comparing their average root mean squared errors. The data analysis concluded that k 0-INAA had better sensitivity and accuracy than FAAS.  相似文献   

14.
In this paper we describe a rapid, simple, and cost-effective liquid chromatography–tandem mass spectrometric (LC–MS–MS) method for simultaneous analysis of aflatoxin B1, B2, G1, and G2, ochratoxin A, and sterigmatocystin in 25 traditional Chinese medicines (TCMs). The method is based on single extraction with 84:16 (v/v) acetonitrile–water then analysis of the diluted crude extract without further clean-up. Chromatographic separation was achieved on a C18 column, with a mobile phase gradient prepared from aqueous 4 mmol L?1 ammonium acetate–0.1 % formic acid and methanol. Quantification of the analytes was by selective reaction monitoring (SRM) on a triple-quadrupole mass spectrometer in positive-ionization mode. Special focus was on investigating and reducing matrix effects to improve accuracy. The established method was validated by determination of linearity (r?>?0.995), sensitivity (limits of quantification 1.6–25.0 ng L?1), apparent recovery (84.8–110.6 %), extraction recovery (83.6–106.1 %), and precision (relative standard deviation ≤9.9 %) for two representative TCMs, Semen Armeniacae Amarae and Radix Pseudostellariae. The applicability of the method to TCMs other than these was further investigated, and 23 other TCMs with acceptable matrix effects (80.2–118.6 %) were screened. The validated method was finally used to assess mycotoxin contamination of 244 samples of 25 TCMs collected from local hospitals and TCM pharmacies. Aflatoxin B1 and ochratoxin A were detected in 5.3 % of the samples. Sterigmatocystin, the most prevalent mycotoxin contaminant, was present in 26.2 % of the samples tested; this has not been reported previously. The results of this work imply greater attention should be devoted to evaluation of the potential hazard caused by sterigmatocystin in TCMs.  相似文献   

15.
Chen  Shizhong  Cheng  Xiuli  He  Yuanyuan  Zhu  Shengping  Lu  Dengbo 《Mikrochimica acta》2013,180(15):1479-1486

We have developed a method for the determination of trace levels of the rare earth elements La, Eu, and Yb in biological and environmental samples. It is based on solidified floating organic drop microextraction using 1-(2-pyridylazo)-2-naphthol (PAN) as a chelator, followed by electrothermal vaporization (ETV) and quantification by inductively coupled plasma mass spectrometry. PAN also acts as a modifier in ETV. The effects of pH, amount of PAN, extraction time, stirring rate, volume of sample solution, and temperature program were examined. Under optimized conditions, the detection limits are 2.1, 0.65 and 0.91 pg mL−1 for the elements La, Eu and Yb, respectively. The relative standard deviations are <6.0 % (c = 0.1 ng mL−1, n = 9). When applied to the analysis of (spiked) natural water samples, the recoveries range from 92 to 105 %. The accuracy was validated with certified reference materials (combined sample of branch and leaf of shrub: GBW 07603 and human hair: GBW 07601), and the results were in good agreement with the certified values.

►Solidified floating organic drop microextraction was combined with ETV for ICP-MS. ►PAN acted as both a chelating agent and a chemical modifier. ►The method was used for analysis of rare earth elements in real samples. ►The method has the merits of low detection limit, good precision and accuracy.

  相似文献   

16.
A simple and rapid inductively coupled plasma optical emission spectrometric method for the determination of trace level impurities like REEs, Y, Cd, Co, V, Mg, B, Ca, Cr, Mn, Ni, Cu, Zn and Al in uranium oxide samples is described. The method involves solvent extraction separation of uranium from 6 M HNO3 acid medium using di (2-ethyl hexyl) phosphoric acid in toluene, which selectively separates uranium leaving behind the trace impurities in the aqueous media, for quantification by ICP-OES. The method has been applied to few synthetic samples and five certified reference U3O8 standards. The results are compared with other methods such as TBP-TOPO-CCl4 and 1,2 diaminocyclohexane N,N,N′,N′-tetra acetic acid (CyDTA)–ammonium hydroxide (NH4OH) separation techniques. Different experimental parameters like contact time, acidity, aqueous to organic ratio etc., are optimized for better and accurate results. The method is simple, rapid, accurate and precise for all the studied elements, showing a relative standard deviation of 1.5–12.0% at trace levels studied (5.5–12% at 0.2 μg/mL and 1.5–6.0% at 0.5 μg/mL), on the synthetic samples prepared from high purity oxides.  相似文献   

17.
The k0-based internal monostandard instrumental neutron activation analysis (IM-INAA) method was applied for quantification of trace impurities in seven high purity aluminum samples used as fuel cladding in a research reactor. Samples along with BCS CRM 182 (Si–Al alloy) were irradiated in high flux reactor neutrons for 10–15 h. In situ detection efficiency, needed in concentration calculation ratio by IM-INAA, was obtained using gamma rays of activation products produced in the samples. Elemental concentration ratios obtained with respect to Fe (used as internal monostandard) were converted to absolute concentrations by determining concentration of Fe by relative method of NAA. Concentrations of ten trace elements (Sc, Cr, Co, Zn, Ga, La, Ce, Sm, W and Hf) including major element Fe were determined in this work. The method used is non-destructive in nature and does not need multielement standards. Results of IM-INAA were compared with those obtained by relative method of INAA and inductively coupled plasma atomic emission spectrometry (ICP-AES). Details of methodologies and results obtained by all methods are discussed and compared in the paper.  相似文献   

18.
As a part of inter comparison exercise of an IAEA Coordinated Research Project on large sample neutron activation analysis, a large size and non standard geometry size pottery replica (obtained from Peru) was analyzed by k 0-based internal monostandard neutron activation analysis (IM-NAA). Two large size sub samples (0.40 and 0.25 kg) were irradiated at graphite reflector position of AHWR Critical Facility in BARC, Trombay, Mumbai, India. Small samples (100–200 mg) were also analyzed by IM-NAA for comparison purpose. Radioactive assay was carried out using a 40 % relative efficiency HPGe detector. To examine homogeneity of the sample, counting was also carried out using X–Z rotary scanning unit. In situ relative detection efficiency was evaluated using gamma rays of the activation products in the irradiated sample in the energy range of 122–2,754 keV. Elemental concentration ratios with respect to Na of small size (100 mg mass) as well as large size (15 and 400 g) samples were used to check the homogeneity of the samples. Concentration ratios of 18 elements such as K, Sc, Cr, Mn, Fe, Co, Zn, As, Rb, Cs, La, Ce, Sm, Eu, Yb, Lu, Hf and Th with respect to Na (internal mono standard) were calculated using IM-NAA. Absolute concentrations were arrived at for both large and small samples using Na concentration, obtained from relative method of NAA. The percentage combined uncertainties at ±1 s confidence limit on the determined values were in the range of 3–9 %. Two IAEA reference materials SL-1 and SL-3 were analyzed by IM-NAA to evaluate accuracy of the method.  相似文献   

19.
Before coal processing such as pyrolysis, liquefaction, gasification and combustion, it is very crucial to monitor the trace element concentration levels as that determines the coal quality. Therefore, the current study describes the development of microwave-assisted acid extraction (MW-AAE) method for extraction of 15 trace elements in coal samples prior to their determination using inductively coupled plasma-mass spectrometry. Diluted HNO3-H2O2 was used in order to reduce reagents amount used, eliminate matrix interferences caused by concentrated acids and to decrease waste produced in analytical laboratories. The optimisation of the proposed extraction method was carried out by using a full factorial design (24) involving four factors; that is, temperature, extraction time, HNO3 and H2O2 concentrations. The optimum conditions for the MW-AAE procedure were found to be 200°C, 5 min, 5 mol L?1 and 2 mol L?1 for temperature, extraction time, HNO3 and H2O2 concentrations, respectively. Under optimum conditions, the accuracy of the MW-AAE method was examined by analysing three coal certified reference materials (SARM 18, 19 and 20) and recoveries of 80–115% were achieved for V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Sr, Zr, Cs, Ba, Pb and U, except for Ti (10–25%) and Hf (27–70%). In addition, the precision of the proposed method, expressed in terms of relative standard deviation (SD) (n = 15), was within the accepted range (≤3.5%). The method detection limits of 0.001–0.57 µg g?1 for all trace elements under the investigation were similar to the literature reported work, except for Ti (4.00 µg g?1).  相似文献   

20.
《Analytical letters》2012,45(14):2214-2231
Abstract

A new simple and sensitive method has been proposed for rapid determination of trace levels of silver in environmental water samples, using dispersive liquid–liquid microextraction (DLLME) prior to its microsample introduction-flame atomic absorption spectrometry. Under the optimum conditions, the linear range was 0.1–7 µg L?1 and limit of detection was 0.018 µg L?1. The relative standard deviation for 0.50 and 5.00 µg L?1 of silver in water sample was 4.0 and 1.7%, respectively. The relative recoveries of silver from tap, well, river, and seawater samples at spiking levels of 1.00 and 5.00 µg L?1 were in the range of 86.4–98.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号