首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
2-溴噻吩和3-溴噻吩在267 nm的C-Br键解离机理   总被引:2,自引:2,他引:0  
利用离子速度影像技术, 研究了2-溴噻吩和3-溴噻吩两种同分异构体在267 nm激光作用下的C—Br键解离机理, 获得了光解产物Br(2P3/2)和Br*(2P1/2)的能量和角度分布, 分析了两异构分子在267 nm 的C—Br键解离通道. 对于2-溴噻吩和3-溴噻吩, 产物Br来源于三个通道: (i) 从单重激发态系间窜跃到排斥的三重激发态的快速预解离; (ii)单重激发态内转化到高振动基态的热解离; (iii) 母体分子多光子电离后的解离. 2-溴噻吩的产物Br*具有类似的产生机制; 但对于3-溴噻吩, 从激发态内转换到高振动基态发生热解离成为产物Br*的主导通道, 而来自激发三重态的快速预解离通道则几乎消失. 定量地给出了各个通道的相对贡献、能量分配及各向异性分布信息. 实验发现, 随着溴原子在噻吩上取代位置远离硫原子, 来自通道(i)和(ii)产物之间的比例明显减小, 相应的各向异性分布有变弱趋势.  相似文献   

2.
2-溴噻吩和3-溴噻吩在267nm的C—Br键解离机理   总被引:1,自引:0,他引:1  
利用离子速度影像技术,研究了2-溴噻吩和3-溴噻吩两种同分异构体在267 nm激光作用下的C-Br键解离机理,获得了光解产物Br(2P3/2)和Br*(2p1/2)的能量和角度分布,分析了两异构分子在267 nm的C-Br键解离通道.对于2-溴噻吩和3-溴噻吩,产物Br来源于三个通道:(i)从单重激发态系间窜跃到排斥的三重激发态的快速预解离;(ii)单重激发态内转化到高振动基态的热解离;(iii)母体分子多光子电离后的解离.2-溴噻吩的产物Br*具有类似的产生机制;但对于3-溴噻吩,从激发态内转换到高振动基态发生热解离成为产物Br*的主导通道,而来自激发三重态的快速预解离通道则几乎消失.定量地给出了各个通道的相对贡献、能量分配及各向异性分布信息.实验发现,随着溴原子在噻吩上取代位置远离硫原子,来自通道(i)和(ii)产物之间的比例明显减小,相应的各向异性分布有变弱趋势.  相似文献   

3.
溴代烷烃在紫外波段的光解离过程   总被引:1,自引:3,他引:1  
在飞行时间质谱仪中,采用波长为234 nm和267 nm的激光,研究溴代烷烃CHBr3、CH2Br2、C2H5Br及C2H4Br2的光离解过程.在UV激光的作用下,溴代烷烃分子主要发生的是吸收1个光子解离出Br原子,然后继续吸收光子发生Br原子的(2+1)共振增强多光子电离的过程.其中由溴代烷烃分子解离得到的Br原子可能存在着两种布居:基态Br(2P03/2)及激发态Br*(2P01/2).研究解离得到的Br原子的分支比 N(Br*)/N(Br),并给出测量结果:溴代烷烃分子解离得到的Br原子在267 nm激光作用下的分支比明显大于在234 nm激光作用下的结果.对此多光子过程的机理,也进行了分析讨论.  相似文献   

4.
姬磊  唐颖  朱荣淑  唐碧峰  张嵩  张冰 《化学学报》2004,62(13):1211-1216,J002
利用飞行时间质谱装置研究了234和267nm激光作用下二溴甲烷、二溴乙烷、二溴丙烷和二溴丁烷分子的光解离过程.研究表明二溴代烷烃分子在紫外激光的作用下主要是断裂C—Br键解离出一个Br原子,并且存在两种可能的布居:基态Br(^2P3/2^0)和激发态Br^*(^2P1/2^0).通过共振增强多光子电离技术探测两种光解产物布居的分支比.对比得到了分子构型对称性不同的二溴代烷烃的分支比,提出了两种假设的光解离模型.  相似文献   

5.
利用离子速度成像方法, 研究n-C7H15Br分子在231~239 nm范围内几个波长处的光解离动力学. 通过同一束激光经(2+1)共振多光子电离(REMPI)过程探测光解碎片Br(2P3/2)和Br*(2P1/2), 得到了不同激光波长处的离子速度分布图像, 从而获得C7H15Br光解产物的能量分配和角度分布. 结合各向异性参数和量子产率, 计算了n-C7H15Br分子在234 nm波长下不同解离通道的比例. 实验表明光解产物的能量分配可以用冲击模型中的软碰撞模型来解释. 实验还发现, 各向异性参数β(Br*)的值对光波长变化很敏感, 这是由电子激发态的绝热和非绝热过程决定的.  相似文献   

6.
正-溴代烷烃的紫外光解动力学研究   总被引:1,自引:0,他引:1  
利用共振增强多光子电离飞行时间质谱(REMPI-TOFMS),研究了长链正-溴代烷烃R-Br(R为正烷烃基)(C2H5Br,n-C3H7Br,n-C4H9Br)在234及267nm附近的光解动力学.溴碎片来源于R-Br的直接解离:R-Br→R Br(^2P3/2)/Br(^2P1/2),根据测定的离子信号强度,得到了Br^n与Br的分支比N(Br^*)/N(Br)及相应的相对量子产额φ(Br^*)和φ(Br).φ(Br^*)与激光波长及分子结构显示了一定的依赖关系,将实验结果用CH3Br的解离模型进行拟合,得到了长链R-Br的光解动力学行为的定性解释。  相似文献   

7.
用共振增强多光子电离方法研究几种含溴化合物的光解   总被引:3,自引:0,他引:3  
张秀  张冰 《化学学报》2006,64(7):599-604
利用飞行时间质谱仪(TOF)和共振增强多光子电离(REMPI)方法, 研究了两种正一溴代烷烃(C2H5Br, n-C3H7Br)和溴苯(C6H5Br)在234及267 nm附近的光解. 测出了这几种含溴化合物在不同波长下光解产物Br*和Br的分支比N(Br*)/N(Br), 并根据从头计算结果, 解释了这几种含溴化合物光解产物的分支比随光解波长变化的趋势及几个低激发态势能面之间的关系.  相似文献   

8.
离子速度成像方法研究溴代环己烷的紫外光解动力学   总被引:1,自引:0,他引:1  
利用二维离子速度成像方法对C6H11Br分子在234 nm附近的光解动力学行为进行了研究. 通过(2+1)共振增强多光子电离探测了光解产物Br*(2P1/2)和Br(2P3/2), 得到它们的相对量子产率. 从光解产物Br*(2P1/2)和Br(2P3/2)的速度图像得到了能量和角度分布. 结果表明, Br*原子主要来自于S1态的直接解离, 而Br则绝大部分是从S2态向T3态的系间交叉跃迁得到, 并导致了两种解离通道能量分布的差别. 实验发现C6H11Br分子解离过程中大部分能量都转化为内能, 但与其它长链溴代烷烃分子相比, 可资用能更多地被分配到平动能中, 结合软反冲模型分析了这种能量分配跟环烷基的构象和稳定性的关系.  相似文献   

9.
利用共振增强多光子电离飞行时间质谱(REMPI-TOFMS),研究了长链正一溴代烷烃R_Br(R为正烷烃基)(C2H5Br,n-C3H7Br,n-C4H9Br)在234及267nm附近的光解动力学.溴碎片来源于R_Br的直接解离:R_Br→R+Br(2P3/2)/Br*(2P1/2).根据测定的离子信号强度,得到了Br*与Br的分支比N(Br*)/N(Br)及相应的相对量子产额(Br*)和(Br).(Br*)与激光波长及分子结构显示了一定的依赖关系.将实验结果用CH3Br的解离模型进行拟合,得到了长链R_Br的光解动力学行为的定性解释.  相似文献   

10.
用离子速度成像方法, 研究了长链C8H17Br分子在234 nm激光下的光解过程. 通过2+1共振增强多光子电离探测了两种光解产物Br*(2P1/2)和Br(2P3/2), 得到了它们的相对量子产率. 从光解产物Br*(2P1/2)和Br(2P3/2)的速度图像得到了能量和角度分布. 并根据相对量子产率和角度分布, 计算了不同解离通道的比例. 实验发现C8H17Br分子解离过程中大部分能量都转化为内能, 该能量分配可以较好地用软反冲模型来解释, 并分析了这种能量分配跟烷基大小的关系.  相似文献   

11.
A velocity imaging technique combined with (2+1) resonance‐enhanced multiphoton ionization (REMPI) is used to detect the primary Br(2P3/2) fragment in the photodissociation of o‐, m‐, and p‐dibromobenzene at 266 nm. The obtained translational energy distributions suggest that the Br fragments are produced via two dissociation channels. For o‐ and m‐dibromobenzene, the slow channel that yields an anisotropy parameter close to zero is proposed to stem from excitation of the lowest excited singlet (π,π*) state followed by predissociation along a repulsive triplet (n,σ*) state localized on the C? Br bond. The fast channel that gives rise to an anisotropy parameter of 0.53–0.73 is attributed to a bound triplet state with smaller dissociation barrier. For p‐dibromobenzene, the dissociation rates are reversed, because the barrier for the bound triplet state becomes higher than the singlet–triplet crossing energy. The fractions of translational energy release are determined to be 6–8 and 29–40 % for the slow and fast channels, respectively; the quantum yields are 0.2 and 0.8, and are insensitive to the position of the substituent. The Br fragmentation from bromobenzene and bromofluorobenzenes at the same photolyzing wavelength is also compared to understand the effect of the number of halogen atoms on the phenyl ring.  相似文献   

12.
C-Br bond dissociation mechanisms of 2-bromothiophene and 3-bromothiophene at 267 nm were investigated using ion velocity imaging technique. Translational energy distributions and angular distributions of the photoproducts, Br(2P3/2) and Br*(2P½), were obtained and the possible dissociation channels were analyzed. For these two bromothiophenes, the Br fragments were produced via three channels: (i) the fast predissociation following the intersystem crossing from the excited singlet state to repulsive triplet state; (ii) the hot dissociation on highly vibrational ground state following the internal conversion of the excited singlet state; and (iii) the dissociation following the multiphoton ionization of the parent molecules. Similar channels are involved for photoproduct Br* of the 2-bromothiophene dissociation at 267 nm; whereas for the photoproduct Br* of 3-bromothiophene, the dissociation channel via internal conversion from the excited singlet state to highly vibrational ground state became dominating and the fast predissociation channel via the excited triplet state almost disappeared. Informations about the relative contribution, energy disposal, and the anisotropy of each channel were quantitatively given. It was found that with the position of Br atom in thienyl being far from S atom, the relative ratios of products from channels (i) and (ii) decreased obviously and the anisotropies corresponding to each channel became weaker.  相似文献   

13.
Velocity imaging technique combined with (2 + 1) resonance-enhanced multiphoton ionization (REMPI) has been used to detect the Br fragment in photodissociation of o-, m-, and p-bromofluorobenzene at 266 nm. The branching ratio of ground state Br(2P3/2) is found to be larger than 96%. Its translational energy distributions suggest that the Br fragments are generated via two dissociation channels for all the molecules. The fast route, which is missing in p-bromofluorobenzene detected previously by femtosecond laser spectroscopy, giving rise to an anisotropy parameter of 0.50-0.65, is attributed to a direct dissociation from a repulsive triplet T1(A' ') or T1(B1) state. The slow one with anisotropy parameter close to zero is proposed to stem from excitation of the lowest excited singlet (pi,pi*)state followed by predissociation along a repulsive triplet (pi,sigma*) state localized on the C-Br bond. For the minor product of spin-orbit excited state Br(2P1/2), the dissociating features are similar to those found in Br(2P3/2). Our kinetic and anisotropic features of decomposition obtained in m- and p-bromofluorobenzene are opposed to those by photofragment translational spectroscopy. Discrepancy between different methods is discussed in detail.  相似文献   

14.
The photodissociation dynamics of allyl bromide was investigated at 234, 265, and 267 nm. A two-dimensional photofragment ion velocity imaging technique coupled with a [2+1] resonance-enhanced multiphoton ionization scheme was utilized to obtain the angular and translational energy distributions of the nascent Br* (2P1/2) and Br (2P3/2) atoms. The Br fragments show a bimodal translational energy distribution, while the Br* fragments reveal one translational energy distribution. The vertical excited energies and the mixed electronic character of excited states were calculated at ab initio configuration interaction method. It is presumed that the high kinetic energy bromine atoms are attributed to the predissociation from 1(pipi*) or 1(pisigma*) state to the repulsive 1(nsigma*) state, and to the direct dissociation from 3(nsigma*) and 3(pisigma*) states, while the low kinetic energy bromine atoms stem from internal conversion from the lowest 3(pipi*) state to 3(pisigma*) state.  相似文献   

15.
The photodissociation dynamics of CBr4 at 267 nm has been studied using time of flight (TOF) mass spectrometry and ion velocity imaging techniques. The photochemical products are detected with resonance enhanced multiphoton ionization (REMPI) as well as single-photon vacuum ultraviolet ionization at 118 nm. REMPI at 266.65 and 266.71 nm was used to detect the ground Br(2P32) and spin-orbit excited Br(2P12) atoms, respectively. The translational energy and angular distributions are consistent with direct dissociation from an excited triplet state and indirect dissociation from high vibrational levels on the singlet ground state surface. Br2+ ions are also observed in the TOF spectra with a focused 267 nm laser. The counter fragment, CBr2+, is observed when this photolysis laser is unfocused, and photons at 118 nm are used to ionize the radical products. The translational energy distributions of the CBr2+ and Br2+ products can be momentum matched, which indicates that molecular Br2 elimination is one of the primary dissociation channels.  相似文献   

16.
Phenalenone (PN) is a very efficient singlet oxygen sensitiser in a wide range of solvents. This work uses ab initio quantum chemical calculations (CASSCF/CASPT2 protocol) to study the mechanism for populating the triplet state of PN responsible for this reaction, the (3)(π-π*) state. To describe in detail this reaction path, the singlet and triplet low-lying excited states of PN have been studied, the critical points of the potential energy surfaces corresponding to these states located and the vertical and adiabatic energies calculated. Our results show that, after the initial population of the S(2) excited state of (π-π*) character, the system undergoes an internal conversion to the (1)(n-π*) state. After populating the dark S(1) state, the system relaxes to the (1)(n-π*) minimum, but rapidly populates the triplet manifold through a very efficient intersystem crossing to the (3)(π-π*) state. Although the population of the minimum of this triplet state is strongly favoured, a conical intersection with the (3)(n-π*) surface opens an internal conversion channel to this state, a path accessible only at high temperatures. Radiationless deactivation processes are ruled out on the basis of the high-energy barriers found for the crossings between the excited states and the ground state. Our computational results satisfactorily explain the experimental findings and are in very good agreement with the experimental data available. In the case of the frequency of fluorescence, this is the first time that these data have been theoretically predicted in good agreement with the experimental results.  相似文献   

17.
The photodissociation of ethyl bromide has been studied in the wavelength range of 231-267 nm by means of the ion velocity imaging technique coupled with a [2+1] resonance-enhanced multiphoton ionization (REMPI) scheme. The velocity distributions for the Br ((2)P(1/2)) (denoted Br*) and Br ((2)P(3/2)) (denoted Br) fragments are determined, and each can be well-fitted by a narrow single-peaked Gaussian curve, which suggests that the bromine fragments are generated as a result of direct dissociation via repulsive potential-energy surfaces (PES). The recoil anisotropy results show that beta(Br) and beta(Br*) decrease with the wavelength, and the angular distributions of Br* suggest a typical parallel transition. The product relative quantum yields at two different wavelengths are Phi(234nm)(Br*)=0.17 and Phi(267nm)(Br*)=0.31. The relative fractions of each potential surface for the bromine fragments' production at 234 and 267 nm reveal the existence of a curve crossing between the (3)Q(0) and (1)Q(1) potential surfaces, and the probability of curve crossing decreases with the laser wavelength. The symmetry reduction of C(2)H(5)Br from C(3v) to C(s) invokes a nonadiabatic coupling between the (3)Q(0) and (1)Q(1) states, and with higher energy photons, the probability that crossing will take place increases.  相似文献   

18.
The equilibrium geometries and harmonic vibrational frequencies of three low-lying triplet excited states of vinyl chloride have been calculated using the state-averaged complete active space self-consistent field (CASSCF) method with the 6-311++G(d,p) basis set and an active space of four electrons distributed in 13 orbitals. Both adiabatic and vertical excitation energies have been obtained using the state-averaged CASSCF and the multireference configuration-interaction methods. The potential-energy surfaces of six low-lying singlet states have also been calculated. While the 3(pi, pi*) state has a nonplanar equilibrium structure, the 3(pi, 3s) and 3(pi, sigma*) states are planar. The calculated vertical excitation energy of the 3(pi, pi*) state is in agreement with the experiment. The singlet excited states are found to be multiconfigurational, in particular, the first excited state is of (pi, 3s) character at the planar equilibrium structure, of (pi, sigma*) as the C-Cl bond elongates, and of (pi, pi*) for highly twisted geometries. Avoided crossings are observed between the potential-energy surfaces of the first three singlet excited states. The absorption spectra of vinyl chloride at 5.5-6.5 eV can be unambiguously assigned to the transitions from the ground state to the first singlet excited state. The dissociation of Cl atoms following 193-nm excitation is concluded to take place via two pathways: one is through (pi, sigma*) at planar or nearly planar structures leading to fast Cl atoms and the other through (pi, pi*) at twisted geometries from which internal conversion to the ground state and subsequent dissociation produces slow Cl atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号