首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Copper (II) aryl carboxylates are known to form co-ordination complexes with various oxygen and nitrogen donors such as pyridine-N-oxide1), quinoline and isoquinoline2) diethylamine and dipropylamine1). There is no reference in literature regarding the preparation of complexes of copper (II) aryl carboxylates with 2,6-lutidine. The present communication describes the preparation of complexes of various copper (II) aryl carboxylates with 2,6-lutidine in acetone or ethylacetate medium.  相似文献   

2.
Copper aryl carboxylates are known to form co-ordination complexes with various nitrogen donors1-4). Except copper (II) benzoate5) complexes of other copper (II) aryl carboxylates with secondary amines such as diethyl amine and dipropyl amine are not known. The present communication deals with the preparation of complexes of various copper (II) aryl carboxylates with diethyl amine and dipropyl amine.  相似文献   

3.
Complexes of nickel(II) aryl carboxylates with a general formula Ni(RC6H4COO)2L2 where R=H, p-CH3. p-Cl, m- & p-NO2; and L = morpholine and piperidine; have been prepared by the interaction of nickel(II) aryl carboxylates with a large excess of appropriate amine. Unlike parent anhydrous nickel(II) aryl carboxylates all these complexes are soluble in common organic solvents.  相似文献   

4.
Summary Several new complexes of cobalt(II) aryl carboxylates Co(O2CC6H4R)2 (R =o-Me;o,m-Cl:o,m-NO2 andm-MeO) have been prepared by refluxing an ethanolic solution of the respective cobalt(II) aryl carboxylate with quinoline (Q) and isoquinoline (IQ). The quinoline complexes are green or purple while isoquinoline complexes are pink to reddish pink. All are neutral and soluble in common organic solvents. Analytical data indicate that quinoline complexes are of 1:1 stoichiometry. Magnetic and spectral studies show them to possess the usual copper(II) acetate monohydrate type dimeric carboxylate bridged structures. formulated as Co2(O2CC6H4R)4Q2, in which cobalt(II) is in a square pyramidal geometry. By contrast, isoquinoline yields monomeric bisamine complexes oftrans-octahedral configuration containing bidentate chelating carboxylate groups.  相似文献   

5.
Summary Morpholine complexes of copper(II) alkanoates and chloroacetates of formula Cu(O2CR)2(Morph)n (where R = H, Me, Et, n-Pr, i-Pr, n-Bu, i-Bu, CH2Cl, CHCl2 and CCl3; Morph = Morpholine and n=1 and/or 2) have been isolated by the direct interaction of morpholine with the respective copper(II) carboxylates in a suitable organic medium and characterized by elemental analyses and various physicochemical techniques. Molecular weight determinations show that 11 complexes are dimeric whereas 21 complexes are monomeric in solution. Electronic spectra and magnetic moments suggest that 11 complexes are dinuclear carboxylate bridged species while 21 addition complexes have atrans-octahedral configuration. The i.r. spectra indicate that morpholine behaves as a monodentate ligand and coordinates through its nitrogen atom.  相似文献   

6.
The goal of this study was to establish the relationship between the 19F NMR line broadening and the varying distance between the 19F nucleus and copper(II) ion, with the aim of gathering data that can be used to interpret 19F NMR spectra of subsequent fluorine-labeled, copper-binding proteins. Fluorinated alkyl and aryl copper(II) carboxylates were synthesized from fluorinated carboxylic acids and Cu(OH)2. The copper(II) carboxylates were characterized using 19F NMR, IR, and single crystal X-ray diffraction. In the alkyl carboxylate compounds, the line broadening and chemical shift lessened with increased distance between the fluorine atom and the copper ions; however, in the aryl carboxylate derivatives, increased distance was not a factor in the amount of line broadening or change in chemical shift between the acid and metal salt. The compound, bis(3-(trifluoromethyl)butyrate) copper(II) (5) was found to possess the optimum combination of decreased line broadening and increased chemical shift sensitivity in 19F NMR. The crystal structures obtained for compounds 1, 2, 4, and 6 were analogous to previous copper(II) carboxylate complexes, though it is noted that compound 6, bis(5,5,5-trifluoropentanoate) copper(II) assumes a tetrameric structure lacking apical ligands, and thus enables the formation of an extended network of near-neighbor copper(II) ions.  相似文献   

7.
A series of new, easily activated NHC–PdII precatalysts featuring a trans‐oriented morpholine ligand were prepared and evaluated for activity in carbon‐sulfur cross‐coupling chemistry. [(IPent)PdCl2(morpholine)] (IPent=1,3‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene) was identified as the most active precatalyst and was shown to effectively couple a wide variety of deactivated aryl halides with both aryl and alkyl thiols at or near ambient temperature, without the need for additives, external activators, or pre‐activation steps. Mechanistic studies revealed that, in contrast to other common NHC–PdII precatalysts, these complexes are rapidly reduced to the active NHC–Pd0 species at ambient temperature in the presence of KOtBu, thus avoiding the formation of deleterious off‐cycle PdII–thiolate resting states.  相似文献   

8.
New N-substituted cyclam ligands 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-1,4,8,11-tetraazacyclotetradecane, 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane, 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-1,4,8,11-tetraazacyclotetradecane, and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane (L1–L4) were synthesized and mononuclear copper(II) and nickel(II) complexes prepared. The ligands and complexes were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. N-alkylation causes red shifts in the λmax values of the complexes. Copper(II) complexes show one-electron, quasi-reversible reduction waves in the range ?1.04 to ?1.00 V. The nickel(II) complexes show one-electron, quasi-reversible reduction waves in the range ?1.18 to ?1.30 V and one-electron, quasi-reversible oxidation waves in the range +1.20 to +1.40 V. The reduction potential of the copper(II) and nickel(II) complexes of the ligands L1 to L2 and L3 to L4 shift anodically on N-alkylation. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment value μeff?=?1.70–1.74 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and on the hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalyst were carried out. The tetra-N-substituted complexes have higher rate constants than the corresponding disubstituted complexes.  相似文献   

9.
Abstract

A series of C-centered heteroscorpionate-based homoleptic manganese(II), nickel(II), and copper(II) complexes of type [M(L1–3)2] (19) have been synthesized by using the ligands (2-hydroxyphenyl)bis(imidazol-1-yl)methane (HL1), (4-diethylamino-2-hydroxyphenyl)bis(imidazol-1-yl)methane (HL2) and (5-bromo-2-hydroxyphenyl)bis(imidazol-1-yl)methane (HL3). The geometric parameters of the complexes were determined using UV-vis and theoretical studies suggesting distorted octahedral geometry around metal(II) ion. Frontier molecular orbital analysis supports bioefficacy of the complexes. Antimicrobial activity of the metal(II) complexes were determined against two Gram(–ve) (Escherichia coli and Klebsiella pneumoniae) and two Gram(+ve) (Bacillus cereus and Staphylococcus aureus) bacteria, and three fungal (Candida albicans, Candida glabrata, and Candida krusei) strains. Antioxidant activity of nickel(II) and copper(II) complexes were evaluated against ABTS, DPPH, and H2O2 free radicals. In vitro cytotoxicity activity of nickel(II) and copper(II) complexes against human breast adenocarcinoma (MCF-7), cervical (HeLa), and lung (A549) cancer cell lines along with one normal human dermal fibroblasts (NHDF) cell line were carried out by MTT assay, which shows the potent activity of copper(II) complex 8 with respect to the standard drug cisplatin. Molecular docking studies evidence the interaction of complexes with cyclin-dependent kinase 2 receptor (CDK2).  相似文献   

10.
A bimetallic catalyst system has been developed that for the first time allows the decarboxylative cross‐coupling of aryl and acyl carboxylates with aryl triflates. In contrast to aryl halides, these electrophiles give rise to non‐coordinating anions as byproducts, which do not interfere with the decarboxylation step that leads to the generation of the carbon nucleophilic cross‐coupling partner. As a result, the scope of carboxylate substrates usable in this transformation was extended from ortho‐substituted or otherwise activated derivatives to a broad range of ortho‐, meta‐, and para‐substituted aromatic carboxylates. Two alternative protocols have been optimized, one involving heating the substrates in the presence of CuI/1,10‐phenanthroline (10–15 mol %) and PdI2/phosphine (2–3 mol %) in NMP for 1–24 h, the other involving CuI/1,10‐phenanthroline (6–15 mol %) and PdBr2/Tol‐BINAP (2 mol %) in NMP using microwave heating for 5–10 min. While most products are accessible using standard heating, the use of microwave irradiation was found to be beneficial especially for the conversion of non‐activated carboxylates with functionalized aryl triflates. The synthetic utility of the transformation is demonstrated with 48 examples showing the scope and limitations of both protocols. In mechanistic studies, the special role of microwave irradiation is elucidated, and further perspectives of decarboxylative cross‐couplings are discussed.  相似文献   

11.
Six macrocyclic complexes, were synthesized by reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane and various amines and their copper(II) perchlorate complexes were synthesized by template effect reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane, Cu(ClO4)2?·?6H2O and amines. The metal-to-ligand ratios were found to be 1?:?1. Cu(II) metal complexes are 1?:?2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3?M. The Cu(II) complexes are proposed to be square planar based on elemental analysis, FT–IR, UV–Vis, magnetic susceptibility measurements, molar conductivity measurements, and mass spectra.  相似文献   

12.
Cu(II) complexes of 14- and 16-membered tetraaza macrocyclic ligands have been encapsulated in nanopores of zeolite-Y by a two-step process in the liquid phase: (1) adsorption of [bis(diamine)copper(II)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, and 1,3-diaminobenzene); [Cu(N–N)2]2+–NaY; in the nanopores of the zeolite-Y and (2) in situ condensation of the copper(II) precursor complex with ethylcinnamate. The new host–guest nanocomposite materials were characterized by chemical analysis and spectroscopic methods. The “neat” and encapsulated complexes exhibit good catalytic activity in the oxidation of ethylbenzene at 333 K, using tert-butyl hydroperoxide as the oxidant. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C–H bond activation takes place both at benzylic and aromatic ring carbon atoms.  相似文献   

13.
Heterometallic copper(II)‐lanthanide(III) complexes have been made with a variety of exclusively O‐donor ligands including betaines (zwitterionic carboxylates) and chloroacetate, which are dinuclear CuLn, tetranuclear Cu2Ln2, pentanuclear Cu3Ln2, and octadecanuclear Cu12 complexes. The results show that subtle changes in both the carboxylates and acidity of the reaction solution can cause drastic changes in the structures of the products. Magnetic studies exhibit that shielding of the Ln3+ 4f electrons by the outer shell electrons is very effective to preclude significant coupling interaction between the Ln3+ 4f electrons and Cu2+ 3d electrons in either a mono‐atomic hydroxide‐bridged, or a carboxylate‐bridged system.  相似文献   

14.
Ni(II) and Cu(II) metal complexes of simple unsymmetrical Schiff-base ligands derived from salicylaldehyde/5-methylsalicylaldehyde and ethylenediamine or diaminomaleonitrile (DMN) were synthesized. The ligands and their complexes were characterized by elemental analysis, 1H NMR, FT IR, and mass spectroscopy. The electronic spectra of the complexes show d–d transitions in the region at 450–600 nm. Electrochemical studies of the complexes reveal that all mononuclear complexes show a one-electron quasi-reversible reduction wave in the cathodic region. ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry, with nuclear hyperfine spin 3/2. The copper(II) complexes show a normal room temperature magnetic moment value μ eff = 1.70–1.74 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts were also carried out. The in vitro antimicrobial activity of the investigated compounds was tested against human pathogenic bacterias such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa and Escherichia coli. The antifungal activity was tested against Candida albicans. Generally, the metal complexes have higher antimicrobial activity than the free ligands.  相似文献   

15.
16.
Reactions of ruthenium(II) carbonyl complexes of the type [RuHCl(CO)(PPh3)2(B)] [B?=?PPh3, pyridine (py), piperidine (pip) or morpholine (mor)] with bidentate Schiff base ligands derived from the condensation of 2-hydroxy-1-naphthaldehyde with aniline, o-, m- or p-toluidine in a 1?:?1 mol ratio in benzene resulted in the formation of complexes formulated as [RuCl(CO)(L)(PPh3)(B)] [L?=?bidentate Schiff base anion, B?=?PPh3, py, pip, mor]. The complexes were characterized by analyses, IR, electronic and 1H NMR spectroscopy, and cyclic voltammetric studies. In all cases, the Schiff bases replace one molecule of phosphine and a hydride ion from the starting complexes, indicating that Ru–N bonds in the complexes containing heterocyclic nitrogenous bases are stronger than the Ru–P bond to PPh3. Octahedral geometry is proposed for the complexes.  相似文献   

17.
Metallacrowns (MCs) of copper(II) and aminohydroxamic acids have been extensively studied during the past few decades. Although their discovery dates back more than twenty years, systematic studies on the thermodynamics of self assembly of MCs and of their capability to act as guests for anions and cations are quite recent. This review focuses on the solution studies of these metallamacrocycles and, in particular, the following aspects are discussed: (i) the thermodynamics of self-assembly of 12-MC-4 complexes; (ii) the thermodynamics of self-assembly and core metal substitution of 15-MC-5 species; (iii) the thermodynamics of host–guest equilibria between 15-MC-5 complexes and anions.The overall thermodynamic parameters for the formation of a wide number of 12-MC-4 species of α-, β- and γ-aminohydroxamates are discussed together with the most relevant structural, spectroscopic and reactivity features reported in the literature for copper(II) metallacrowns. These data provide a thermodynamic quantitation of the “metallacrowns structural paradigm”, and show the possibility to devise new MCs with desired stabilities in different medium conditions through an appropriate choice of metal coordinating moieties and ligand dimensions. The thermodynamics of self-assembly of 15-MC-5 is discussed for Ca2+ and Ln3+ as core metals, and the overall formation constants are used to evaluate the copious literature data regarding the stability of these species in solution. The relative stability of 15-MC-5 complexes of different Ln3+ ions is also discussed, showing the extraordinary capability of these complexes to discriminate different Ln3+ ions on the basis of their dimensions. Finally, the thermodynamics of host–guest equilibria of 15-MC-5 complexes as receptors for carboxylates is presented: the binding affinities of different carboxylates for the 15-MC-5 species with Ln3+ as the core metal are discussed on the basis of guests hydrophobicity, dimension and basicity, and in terms of core metal Lewis acidity.  相似文献   

18.
A series of copper(II) complexes were synthesized by the reaction of copper(II) chlorid with 1‐phenyl‐3methyl‐(3‐dervitives phenylhydrazo)‐5‐pyrazolone (HLn) yields 1:1 and 1:2 (M:L) complexes depending on the reaction conditions. The elemental analysis, spectral (IR, 1H NMR, UV‐Vis and ESR), conductance and magnetic measurements were used to characterize the isolated complexes. The IR spectral data indicate that the metal ions are coordinated through the oxygen of the keto and nitrogen of hydrazone groups. The UV‐Vis spectra, magnetic moments and ESR studies indicate square planar geometry for Cu(II) complexes ( 1–3 ) by NO monobasic bidentate and the two monobasic trans bidentate in octahedral geometry for Cu(II) complexes ( 4–6 ). It is found that the change of substituent affects the theoretical calculations of Cu(II) complexes. Molecular docking was used to predict the binding between the ligands (HLn) and the receptors of prostate cancer mutant (2Q7K), breast cancer mutant (3HB5), crystal structure of E. coli (3T88) and crystal structure of S. aureus (3Q8U). The molecular and electronic structures of Cu(II) complexes and quantum chemical calculations were studied. According to intramolecular hydrogen bond leads to increasing of the complexes stability.  相似文献   

19.
A series of monomeric palladacycle complexes bearing n‐butyl‐substituted N‐heterocyclic carbenes, namely [Pd(NHC)X(dmba)] (dmba: dimethylbenzylamine and [Pd(NHC)X(ppy)]; NHC: 1‐n‐butyl‐3‐substituted benzylimidazol‐2‐ylidene; ppy: 2‐phenylpyridine), were prepared either by transmetallation from the corresponding silver carbene complexes or by the reaction of the corresponding acetate‐bridged palladacycle dimer with N‐heterocyclic carbene ligands in high yields. The palladium(II) complexes were characterized using elemental analyses, APCI‐MS, 1H NMR and 13C NMR spectroscopies. These complexes are efficient in the Suzuki–Miyaura coupling reaction between phenylboronic acid and aryl bromides.  相似文献   

20.
A new dioxime ligand, (2E,3E)-3-[(6-{[(1E,2E)-2-(hydroxyimino)-1-methylpropylidene]amino}-pyridin-2-yl)imino]butan-2-one oxime, (H2Pymdo) (3) has been synthesized in H2O by reacting 2,3-butenedione monoxime (2) with 2,6-diaminopyridine. Mono-, di- and tri-nuclear copper(II) complexes of the dioxime ligand (H2Pymdo) and/or 1,10-phenanthroline have been prepared. The dioxime ligand (H2Pymdo) and its copper(II) complexes were characterized by 1H-n.m.r., 13C-n.m.r. and elemental analyses, magnetic moments, i.r. and mass spectral studies. The mononuclear copper(II) complex of H2Pymdo was found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of the metal complexes indicated that the metal ions are coordinated to the oxime and imine nitrogen atoms (C=N). In the dinuclear complexes, in which the first Cu(II) ion was complexed with nitrogen atoms of the oxime and imine groups, the second Cu(II) ion is ligated with dianionic oxygen atoms of the oxime groups and are linked to the 1,10-phenanthroline nitrogen atoms. The trinuclear copper(II) complex (6) was formed by coordination of the third Cu(II) ion with dianionic oxygen atoms of each of two molecules of the mononuclear copper(II) complexes. The data support the proposed structure of H2Pymdo and its Cu(II) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号