首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
Nanoparticles are possible carriers for drug delivery. Copolymer nanoparticles of acrylic acid, acrylic amide, acrylic butylester, and methacrylic methylester (CAA) dispersed in water and in 0.15 M NaCl-solution were investigated by small-angle x-ray scattering (SAXS) experiments. The particles were characterized in terms of parameters relevant for the in vivo distribution: particle shape and diameter, size distribution, surface structure, and their organization within tight systems.The CAA-nanoparticles exist in at least three populations of spheres with two minor subpopulations having radii of about 32 and 66 nm and the main moiety around 45 nm. The degree of polydispersity isR w/R N=1.05. The subpopulations possess different hydrophobic areas on their surfaces, leading to different recognition by opsonins in vivo and different organ distribution and clearance velocity. The particles are compact without channels and holes, which is proved by low internal hydrationw=0.22 g H2O/g polymer. Drugs and coating surfactants will interact mainly with the outer surface and not tunnel into the carriers. The surface of the nanoparticles is fractal with a dimensionD=2.3. Probe-molecules with dimensions less than 11.4 nm in diameter will find a larger contact area than expected from the sphere radius. Adsorption rate and position of the arrival of surfactants, and possibly opsonins, may be affected thereby. The negative charges on the CAA-nanoparticle surface are nearly completely screened in physiological NaCl-solutions by counter-ions. Therefore, surface charges hamper carrier-cell interaction at short distances only and do not prevent specific recognition and clearance by the reticuloendothelial system (RES).  相似文献   

2.
Silver nanoparticles were assembled on polyvinylpyridine (PVP) derivatized glass slides. Charge transfer between the adsorbed 4-aminothiophenol (PATP) and the immobilized silver nanoparticles was studied by surface-enhanced Raman spectroscopy with 1064 nm excitation, and compared with that of the silver nanoparticles in the colloid. It was demonstrated that the positive charges of the PVP layer could alter the charge distribution in the immobilized nanoparticles and induce the formation of the dipole in the nanoparticles, leading to less charge transfer from the metal to the adsorbed molecules. The coadsorption of chloride ions on the surface of the immobilized silver nanoparticles resulted in the redistribution of the charges in the nanoparticles and, in turn, altered the charge transfer between the adsorbed PATP molecules and the silver nanoparticles.  相似文献   

3.
We study the interaction between two like charged surfaces embedded in a solution of oppositely charged multivalent rod-like counterions.The counterions consist of two rigidly bonded point charges,each of valency Z.The strength of the electrostatic coupling increases with increasing surface charge density or valency of the charges.The system is analyzed by employing a self-consistent field theory,which treats the short and long range interactions of the counterions within different approximations.We find that in the weak coupling limit,the interactions are only repulsive.In the intermediate coupling regime,the multivalent rod-like counterions can mediate attractive interactions between the surfaces. For sufficiently long rods,bridging contributes to the attractive interaction.In the strong coupling limit,the charge correlations can contribute to the attractive interactions at short separations between the charged surfaces.Two minima can then appear in the force curve between surfaces.  相似文献   

4.
We summary recent advances of transformable NPs for nanomedicine. In this review, the transformation of NPs is divided into three groups including changes in size, surface charge and morphology, which is induced by internal stimuli, such as pH, enzyme, receptor or external stimuli, such as light, temperature.  相似文献   

5.
Gold nanoparticles functionalized with a triarylcarbinol derivative have been used as colorimetric molecular probes for the naked-eye detection of the nerve agent simulants DCNP and DFP. The detection process is based on the compensation of charges at the surface of the nanoparticles which triggers their aggregation in solution with the resulting change in their plasmon band.  相似文献   

6.
It is well known that the electrostatic repulsions between charges on neighboring sites decrease the effective charge at the surface of a charged nanoparticle (NP). However, the situation is more complex close to a dielectric discontinuity, since charged sites are interacting not only with their neighbors but also with their own image charges and the image charges of all neighbors. Titrating site positions, solution ionic concentration, dielectric discontinuity effects, and surface charge variations with pH are investigated here using a grand canonical Monte Carlo method. A Tanford and Kirkwood approach is used to calculate the interaction potentials between the discrete charged sites. Homogeneous, heterogeneous, and patch site distributions are considered to reproduce the various titrating site distributions at the solid/solution interface of spherical NPs. By considering Coulomb, salt, and image charges effects, results show that for different ionic concentrations, modifications of the dielectric constant of NPs having homogeneous and heterogeneous site distributions have little effect on their charging process. Thus, the reaction field, due to the presence of image charges, fully counterbalances the Coulomb interactions. This is not the case for patch distributions, where Coulomb interactions are not completely counterbalanced by the reaction field. Application of the present model to pyrogenic silica is also performed and comparison is made with published experimental data of titration curves at various ionic concentrations.  相似文献   

7.
The in situ surface activation of raw CaCO(3) nanoparticles by interaction with a series of sodium carboxylates of chain length between 6 and 12 as well as sodium 2-ethylhexylsulfosuccinate (AOT) was studied, and the impact of this on the stabilization and phase inversion of toluene-water emulsions was assessed. By using complementary experiments including measurement of particle zeta potentials, adsorption isotherms of amphiphile, and relevant contact angles, the mechanism of this activation was revealed. The results show that hydrophilic CaCO(3) nanoparticles can be surface activated by interaction with sodium carboxylates and AOT even if they are not surface-active themselves. Both the electrostatic interaction between the positive charges on particle surfaces and the negative charges of anionic amphiphile headgroups and the chain-chain interactions of the amphiphile result in monolayer adsorption of the amphiphile at the particle-water interface. This transforms the particles from hydrophilic to partially hydrophobic such that they become surface-active and stabilize oil-in-water O/W(1) emulsions and induce O/W(1) → water-in-oil W/O phase inversion, depending on the chain length of the carboxylate molecules. At high amphiphile concentration, bilayer or hemimicelle adsorption may occur at the particle-water surface, rendering particles hydrophilic again and causing their desorption from the oil-water interface. A second phase inversion, W/O → O/W(2), may occur depending on the surface activity of the amphiphile. CaCO(3) nanoparticles can therefore be made good stabilizers of both O/W and W/O emulsions once surface activated by mixing with traces of suitable anionic amphiphile.  相似文献   

8.
Using Monte Carlo simulation, we study the metallization of DNA fragments via the templating of gold nanoparticles. To represent the interaction between metal entities, a nanoparticle-nanoparticle interaction potential was derived on the basis of the many-body Gupta potential. The aggregation of the nanoparticles on the template surface is due to the additive effect of electrostatic attraction between the positive charges on the Au particles and the negative charges of the phosphate groups of DNA molecule and the short-range attraction between the metallic nanoparticles. As a result, the assembly of a continuous nanowire can be templated. Depending on the nanoparticle size and charge, the metallic covering can be both continuous and discontinuous. The question of how size and charge of Au nanoparticles influence the structure of metallic coat is discussed in detail. Both monodisperse and polydisperse nanoparticles are considered. Dispersion in the nanoparticle size was found to have little effect on the calculated characteristics of the aggregate.  相似文献   

9.
In this work, electrophoresis was successfully used to separate three different polymer-coated magnetic iron oxide nanoparticles with similar sizes (nominally 50 nm) using high-pH borate buffer system. The coating polymers were dextran, polyethylene glycol, or carboxymethyl dextran. The results showed that the migration time of carboxymethyl dextran coated nanoparticles is the longest due to relatively more negative surface charges. Investigation of the effects of buffer concentration, pH, electric field strength and the capillary temperature, on electrophoretic properties of samples was also carried out. The results showed that pH, electric field strength and the capillary temperature had indirect relations with both of the migration time and the separation resolution of three different polymer-coated nanoparticles while the buffer concentration had a direct relation.  相似文献   

10.
The adsorption of a single and negatively charged polyion with varying flexibility onto a surface carrying both negative and positive charges representing a charged membrane surface has been investigated by using a simple model employing Monte Carlo simulations. The polyion was represented by a sequence of negatively charged hard spheres connected with harmonic bonds. The charged surface groups were also represented by charged hard spheres, and they were positioned on a hard surface slightly protruding into the solution. The surface charges were either frozen in a liquidlike structure or laterally mobile. With a large excess of positive surface charges, the classical picture of a strongly adsorbed polyion with an extended and flat configuration emerged. However, adsorption also appeared at a net neutral surface or at a weakly negatively charged surface, and at these conditions the adsorption was stronger with a flexible polyion as compared to a semiflexible one, two features not appearing in simpler models containing homogeneously charged surfaces. The presence of charged surface patches (frozen surface charges) and the ability of polarization of the surface charges (mobile surface charges) are the main reasons for the enhanced adsorption. The stronger adsorption with the flexible chain is caused by its greater ability to spatially correlate with the surface charges.  相似文献   

11.

We report on the capillary electrophoretic behavior of citrate-capped gold and silver nanoparticles in aqueous medium when applying a ligand-exchange surface reaction with thiols. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) of similar size (39 ± 6 and 41 ± 7 nm, respectively) and shape were synthesized, covered with a citrate shell, and characterized by microscopic and spectroscopic techniques. The analysis of these NPs by CE was accomplished by using a buffer solution (pH 9.7; 40 mM SDS, 10 mM CAPS; 0.1 % methanol) containing the anions of thioctic acid or thiomalic acid. These are capable of differently interacting with the surface of the AuNPs and AgNPs and thus introducing additional negative charges. This results in different migration times due to the formation of differently charged nanoparticles.

Capillary electrophoretic behavior of citrate-capped gold and silver nanoparticles (NPs) in aqueous medium when applying a ligand-exchange surface reaction with thiols (thioctic and thiomalic acids), which introduces additional negative charges, has been studied

  相似文献   

12.
Stable nanoparticle dispersion in aqueous solutions was obtained with partially sulfonated polystyrene. The hydrophobic association of the backbone chains and phenyl groups is balanced by the electrostatic repulsion of the sulfonate groups on the particle surface. The size distribution of the sulfonated polystyrene particles in relation to concentration, degree of sulfonation and chain length, and pH was characterized by dynamic laser light-scattering. The structure and morphology of the particles were characterized with fluorescence and atom force microscopy. Highly sulfonated polystyrene particles can form large complex particles with positively charged protein, apo cytochrome c. Dynamic laser light-scattering and atom force microscopy studies show that the size and distribution of the complex particles depend on the relative amount of apo cytochrome c and sulfonated polystyrene. When sulfonated polystyrene is in excess, apo cytochrome c interacts with sulfonated polystyrene particles forming stable complexes and excessive sulfonated polystyrene particles bind to the periphery of the complexes preventing them from further aggregation. When apo cytochrome c is in excess, apo cytochrome c links the complexes forming much larger particles. Fluorescence study demonstrates that the hydrophobicity/hydrophility of the complex particles is relative to the ratio of apo cytochrome c and sulfonated polystyrene, degree of sulfonation, and pH. Apo cytochrome c not only can neutralize the negative charges on the surface of sulfonated polystyrene particles, but may also insert into the cores disrupting the original structure of sulfonated polystyrene particles.  相似文献   

13.
ZrO(2) nanoparticles were successfully fabricated via a facile hydrothermal process. The diameter and surface area of the as-prepared ZrO(2) nanoparticles were approximately 5-10 nm and 102 m(2)/g, respectively. For the first time, Zr atoms with partial positive charges in a Lewis acid ZrO(2) nanoparticle adsorbent were used for the adsorption of negatively charged phospholipids from Jatropha oil. The capacity for phospholipid adsorption using the ZrO(2) nanoparticles was better than that of commercial ZrO(2) powder due to the larger surface area of the ZrO(2) nanoparticles. Phospholipid removal makes Jatropha oil a potential oil for biofuel applications.  相似文献   

14.
Harper MM  Dougan JA  Shand NC  Graham D  Faulds K 《The Analyst》2012,137(9):2063-2068
Developments in specific DNA detection assays have been shown to be increasingly beneficial for molecular diagnostics and biological research. Many approaches use optical spectroscopy as an assay detection method and, owing to the sensitivity and molecular specificity offered, surface enhanced Raman scattering (SERS) spectroscopy has become a competitively exploited technique. This study utilises SERS to demonstrate differences in affinity of dye labelled DNA through differences in electrostatic interactions with silver nanoparticles. Results show clear differences in the SERS intensity obtained from single stranded DNA, double stranded DNA and a free dye label and demonstrate surface attraction is driven through electrostatic charges on the nucleotides and not the SERS dye. It has been further demonstrated that, through optimisation of experimental conditions and careful consideration of sequence composition, a DNA detection method with increased sample discrimination at lower DNA concentrations can be achieved.  相似文献   

15.
The electrophoretic mobility (EPM) of rat cardiomyocytes with or without the treatment of neuraminidase was studied by cell electrophoresis. The EPM was found to change over a range from 0 to 8.67 μm s?1/V cm?1, depending on ionic strength, transmembrane potential, pH value, and/or surface charges. It is interesting that zero EPM was observed but reverse of the mobility was not. These results suggested that the negative charges carried on the cardiomyocyte surface might comprehensively consist of surface sialic acid, plasmalemma proteins, phospholipids, and transmembrane potential. The aberrant electrical double layer formed between the carried negative charges and adions had a big adsorption layer and a diffusion layer whose sizes changed circularly, making only negative charges be carried on the surface of living cardiomyocytes. The special structures on the surface of cardiomyocytes probably play a considerable role in the process of cardiac electrical activity.  相似文献   

16.
The surface site distribution and the dielectric discontinuity effects on the charging process of a spherical nanoparticle (NP) have been investigated. It is well known that electrostatic repulsion between charges on neighbouring sites tends to decrease the effective charge of a NP. The situation is more complicated close to a dielectric breakdown, since here a charged site is not only interacting with its neighbours but also with its own image charge and the image charges of all its neighbours. Coexistence of opposite charges, titration sites positions, and pH dependence are systematically studied using a grand canonical Monte Carlo method. A Tanford and Kirkwood approach has been applied to describe the interaction potentials between explicit discrete ampholytic charging sites. Homogeneous, heterogeneous and patch site distributions were considered to reproduce the titration site distribution at the solid/solution interface of natural NPs. Results show that the charging process is controlled by the balance between Coulomb interactions and the reaction field through the solid-liquid interface. They also show that the site distribution plays a crucial role in the charging process. In patch distributions, charges accumulate at the perimeter of each patch due to finite size effects. When homogeneous and heterogeneous distributions are compared, three different charging regimes are obtained. In homogeneous and heterogeneous (with quite low polydispersity indexes) distributions, the effects of the NP dielectric constant on Coulomb interactions are counterbalanced by the reaction field and in this case, the dielectric breakdown has no significant effect on the charging process. This is not the case in patch distributions, where the dielectric breakdown plays a crucial role in the charging process.  相似文献   

17.
Because ionically stabilized colloids in aqueous dispersions have net surface charges that depend on pH, it is potentially possible to separate mixtures of nanospheres having identical radii, yet different types of stabilizing surface charge groups, efficiently using passivated gel electrophoresis (gel-EP). To demonstrate this, we separate a binary dispersion of polystyrene nanospheres that have nearly identical radii and surface group densities, yet different types of anionic stabilizing surface charge groups: sulfate and carboxylate. We achieve an efficient separation by adjusting the pH of the running buffer to lie between the pKa values of these charge groups, resulting in significantly different protonation and, consequently, different electrophoretic propagation velocities of the nanospheres. The measured steady-state propagation velocities of both types of anionic nanoparticles as a function of pH can be fit well by an equilibrium model of pH-dependent protonation of anionic surface charge groups. Thus, pH-controlled passivated gel-EP opens a route for separating similarly sized charged colloidal objects that are stabilized by a variety of different surface charge groups.  相似文献   

18.
Nanoparticles are widely used in the pharmaceutical and food industries, but the consequences of exposure to the human body have not been thoroughly investigated. Apolipoprotein A-I (apoAI), the major protein in high-density lipoprotein (HDL), and other lipoproteins are found in the corona around many nanoparticles, but data on protein structural and functional effects are lacking. Here we investigate the structural consequences of the adsorption of apoAI, apolipoprotein B100 (apoB100), and HDL on polystyrene nanoparticles with different surface charges. The results of circular dichroism, fluorescence spectroscopy, and limited proteolysis experiments indicate effects on both secondary and tertiary structures. Plain and negatively charged nanoparticles induce helical structure in apoAI (negative net charge) whereas positively charged nanoparticles reduce the amount of helical structure. Plain and negatively charged particles induce a small blue shift in the tryptophan fluorescence spectrum, which is not noticed with the positively charged particles. Similar results are observed with reconstituted HDL. In apoB100, both secondary and tertiary structures are perturbed by all particles. To investigate the generality of the role of surface charge, parallel experiments were performed using human serum albumin (HSA, negative net charge) and lysozyme (positive net charge). Again, the secondary structure is most affected by nanoparticles carrying an opposite surface charge relative to the protein. Nanoparticles carrying the same net charge as the protein induce only minor structural changes in lysozyme whereas a moderate change is observed for HSA. Thus, surface charge is a critical parameter for predicting structural changes in adsorbed proteins, yet the effect is specific for each protein.  相似文献   

19.
Polymeric nanoparticles-based therapeutics show great promise in the treatment of a wide range of diseases, due to the flexibility in which their structures can be modified, with intricate definition over their compositions, structures and properties. Advances in polymerization chemistries and the application of reactive, efficient and orthogonal chemical modification reactions have enabled the engineering of multifunctional polymeric nanoparticles with precise control over the architectures of the individual polymer components, to direct their assembly and subsequent transformations into nanoparticles of selective overall shapes, sizes, internal morphologies, external surface charges and functionalizations. In addition, incorporation of certain functionalities can modulate the responsiveness of these nanostructures to specific stimuli through the use of remote activation. Furthermore, they can be equipped with smart components to allow their delivery beyond certain biological barriers, such as skin, mucus, blood, extracellular matrix, cellular and subcellular organelles. This tutorial review highlights the importance of well-defined chemistries, with detailed ties to specific biological hurdles and opportunities, in the design of nanostructures for various biomedical delivery applications.  相似文献   

20.
Patterned deposition of nanoparticles is a prerequisite for the application of unique properties of nanoparticles in future nanodevices. Recent development of nanoxerography requires highly charged aerosol nanoparticles to avoid noise deposition due to random Brownian motion. However, it has been known that it is difficult to charge aerosol nanoparticles with more than two elementary charges. The goal of this work is to develop a simple technique for obtaining highly charged monodisperse aerosol nanoparticles by means of electrospray of colloidal suspension. Highly charged aerosol nanoparticles were produced by electrospraying (ES) and drying colloidal suspensions of monodisperse gold nanoparticles. Size and charge distributions of the resultant particles were measured. We demonstrate that this method successfully charges monodisperse nanoparticles very highly, e.g., 122 elementary charges for 25.0 nm, 23.5 for 10.5 nm, and 4.6 for 4.2 nm. The method described here constitutes a convenient, reliable, and continuous tool for preparing highly charged aerosol nanoparticles from suspensions of nanoparticles produced by either wet chemistry or gas-phase methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号