首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rational design of nanozymes with superior activities is essential for improving bioassay performances. Herein, nitrogen and boron co-doped graphene nanoribbons(NB-GNRs) are prepared by a hydrothermal method using urea as the nitrogen source and boric acid as the boron source, respectively.The introduction of co-doped and edge structures provides high defects and active sites. The resultant NB-GNRs nanozymes show superior peroxidase-like activities to nitrogen-doped and boron-doped counterpa...  相似文献   

2.
《中国化学快报》2023,34(3):107650
In recent years, nanozymes have received more and more attention, but the low activity limits the development of nanozymes. Therefore, the design and development of efficient nanozymes is still a major challenge for researchers. Herein, the Fe,N co-doped ultrathin hollow carbon framework (Fe,N-UHCF) exhibit ultra-high peroxidase-like activity. The specific activity of Fe,N-UHCF nanozyme is as high as 36.6 U/mg, which is much higher than almost all of other reported nanozymes. In practical applications, the Fe,N-UHCF show good antibacterial effects.  相似文献   

3.
Nanomaterials with oxidase- and peroxidase-like activities have potential in antibacterial therapy. The optimal activity of most nanozymes occurred in acidic pH (3.0–5.0), while the pH in biological systems is mostly near neutral. Herein, a general system using 9-fluorenylmethoxycarbonyl-modified diphenylalanine (Fmoc-FF) hydrogel for enhancing oxidase- and peroxidase-like activities of Pt NPs and other typical enzyme-like nanomaterials at neutral or even alkaline pH is proposed. In this system, Fmoc-FF hydrogel provides an acidic microenvironment for Pt NPs due to hydrogen protons (H+) produced by the dissociation of F at neutral pH. As a result, Pt NPs exhibits 6-fold enhanced oxidase-like and 26-fold peroxidase-like activity after being encapsulated into Fmoc-FF hydrogel at pH 7.0. Based on outstanding enzymatic activities and the antibacterial activity of Fmoc-FF hydrogel itself, Pt-Fmoc-FF hydrogel realizes excellent antibacterial effect. This design provides a universal strategy to break pH limitation of nanozymes and promotes the biological applications of nanozymes.  相似文献   

4.
《中国化学快报》2020,31(5):1109-1113
The exploitation of multifunctional nanocomposites is highly desired in environmental monitoring,biosensors,and medical diagnosis.In this paper,a simple approach has been proposed to fabricate MoS_2 decorated N-doped carbon nanotubes(NCNTs@MoS_2) hybrid composites as efficient peroxidase-like mimics.The combination of the MoS_2 and N-doped carbon nanotubes(NCNTs) brings about an enhanced synergistic effect,leading to remarkably decent intrinsic peroxidase-mimic activities than that of the single components.Due to the high catalytic efficiency of the resultant NCNTs@MoS_2 hybrid nanotubes as peroxidase-like mimics,a co nvenient colorimetric approach for the sensitive determination of H_2 O_2 and ascorbic acid have been developed with a detection limit of about 0.14 μmol/L and 0.12 μmol/L,respectively.The work offers a new strategy for the fabrication of peroxidase-like nanomaterials with excellent catalytic activity,which indicates great promising applications in sensitive detections in real samples.  相似文献   

5.
Though numerous nanomaterials with enzyme-like activities have been utilized as probes and sensors for detecting biological molecules, it is still challenging to construct highly sensitive detectors for biomarkers using polymeric materials. Benefiting from the π-d delocalization effect of electrons, excellent metal-chelating property, high electron transferability, and good chemical stability of π-conjugated phthalocyanine, the design of the copper phthalocyanine-based conjugated polymer nanoparticles (Cu-PcCP NPs) as a colorimetric sensor for a variety of biomarkers is reported. The Cu-PcCP NPs are synthesized through a simple microwave-assisted polymerization, and their chemical structures are thoroughly characterized. The colorimetric results of Cu-PcCP NPs demonstrate excellent peroxidase-like detecting activity and also great substrate selectivity than most of the reported Cu-based nanomaterials. The Cu-PcCP NPs can achieve a detection limit of 4.88 μM for the H2O2, 4.27 μM for the L-cysteine, and 21.10 μM for the glucose via a cascade catalytic system, which shows comparable detecting sensitivity as that of many earlier reported enzyme-like nanomaterials. Moreover, Cu-PcCP NPs present remarkable resistance to harsh conditions, including high temperature, low pH, and excessive salts. These highly specific π-conjugated copper-phthalocyanine nanoparticles not only overcome the current limitation of polymeric material-based sensors but also provide a new direction for designing next-generation enzyme-like nanomaterial-based colorimetric biosensors.  相似文献   

6.
The integration of nanozyme and natural enzyme for cascade reactions has attracted great attention due to their huge potential applications in detection, biomedicine, and catalysis. Here the novel cascade bio-platforms were fabricated by using spherical poly[(2-methacryloyloxyethyl)trimethyl ammonium chloride] (PMOTA) brushes (SPB) as nanoreactors to prepare platinum nanoparticles in situ and as nanocarriers to immobilize glucose oxidase (GOX). The generated Pt nanoparticles possess high stability and peroxidase-like properties, which can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 to generate blue colored oxidized TMB (oxTMB). And the absorbed GOX can specifically catalyze the oxidation of glucose into gluconic acid and H2O2, while the produced H2O2 is subsequently catalyzed by the Pt nanozymes. Thus, the co-immobilized Pt nanozymes and GOX within SPB (SPB@Pt@GOX) acted as effective biosensors for colorimetric detection of glucose showing high selectivity and great feasibility. This work demonstrates a facile and general strategy to use SPB as bio-platforms to integrate nanozymes and natural enzymes for cascade reactions.  相似文献   

7.
Colorimetric sensing strategies as a powerful point-of-care testing(POCT) tool have attracted significant interest in various chem/biosensing applications.Taking the excellent bare-eye-detectable signaling feature,nanozymes-based colorimetric sensors enable more potential applications and have been a new forefront in the colorimetric POCT analysis toward different target analytes.However,the low catalytic activity of nanozymes in most cases limits their practical application.Recent efforts demonstrate that the aggregation-induced nanozymes provide a general means to modulate nanozymes activity and enhance colorimetric sensing performances of some nanozymes-based colorimetric sensors.But there are few reports are explored to discuss and review such aggregation-induced nanozymes and their colorimetric sensing applications.To highlight the advances and progress in aggregation-induced nanozymes based colorimetric assays,we herein summary the fundamentals,classify and applications of this newlydeveloping field,focusing on the aggregation-induced activity enhancement of nanozymes(AIAEnanozymes) with a significant "signal-on" feature and aggregation-induced activity inhibition of nanozymes(AIAI-nanozymes) with a dramatical "signal-of" characteristics.Finally,we also propose the current challenges and the future prospects on both AIAE-nanozymes and AIAI-nanozymes.  相似文献   

8.
We demonstrate that Co(3)O(4) nanoparticles (NPs) exhibit intrinsic peroxidase-like activity and catalase-like activity. The peroxidase-like activity of the Co(3)O(4) NPs originates from their ability of electron transfer between reducing substrates and H(2)O(2), not from ˙OH radical generated. As peroxidase mimetics, Co(3)O(4) NPs were used for colorimetric determination of H(2)O(2) and glucose.  相似文献   

9.
In enzyme-like catalytic reactions, the size effect of nanoparticles has been an essential yet unclear factor for the catalytic activity of nanozymes. Moreover, the synthesis of nanozymes with controllable size and electronic structures represents a grand challenge, which limits the systemic exploration the underlying nature of their structure–property relations and practical application. In this work, we proposed a novel strategy to regulate the size of Pt (0.55 ~ 2.81 nm) by atomic layer deposition for precisely tailoring Pt-based nanozymes. The size-dependent electronic and kinetic effects have been observed for the peroxidase-like reaction and antibacterial process, revealing a volcano-type dependence of intrinsic activity on Pt nanoparticle sizes, and the optimum Pt nanoparticle size was found to be ca. 1.69 nm. A combination of kinetic study and XPS analyses, as well as multiple nanozyme characterizations, demonstrates that Pt nanoparticles with an appropriate size contribute to proper affinity to the substrates, relating to a high ratio of Pt0/Pt2+ on the surface of Pt nanoparticles, which is beneficial to obtain the excellent catalytic performance and antibacterial activity. Our work provides insights for an in-depth understanding size-dependent catalytic mechanism of nanozymes during antibacterial processes.  相似文献   

10.
贵金属纳米材料在纳米尺度具有独特的光学、 电学性质及优异的催化性能, 是一类重要的功能纳米材料. 基于贵金属材料的纳米酶研究是贵金属纳米材料在生物医学领域的一个前沿研究方向. 贵金属基纳米酶具有特殊的光学性质、 较好的化学稳定性、 可调控的类酶活性及良好的生物相容性, 是目前纳米生物医学领域的热点研究材料. 本文总结了贵金属基纳米酶的活性种类、 活性机理、 活性调控以及在生物医学等领域的潜在应用.  相似文献   

11.
Artificial nanoenzymes with enzyme-like catalytic activity have gradually become an alternative to natural enzymes due to their low production cost, high stability, and good tolerance. In recent years, various enzyme mimics have emerged with the rapid development of nano-teclnology. Metal-organic frameworks(MOFs) are a novel class of porous inorganic-organic hybrid materials made from metal ions/clusters and organic ligands, and MOFs-based nanozymes show great prospect in biosensing, biocatalysis, biomedical imaging, and therapeutic applications, due to unique properties, such as high specific surface area, high porosity, tunable morphology, and excellent biocatalytic properties. In this paper, the recent progresses concerning MOFs-based nanozymes are systematically summarized, including the synthesis, design strategies and related applications, which are divided into two major categories, namely, MOFs structured nanoenzymes and MOFs composite structured nanoenzymes. Meanwhile, the applications of various classifications of MOFs research are introduced. At the end, current challenges and future perspectives of MOFs-based nanozymes are also discussed. It is highly expected that this review on this important area can provide a meaningful guidance for tumor therapy, biosensing and other aspects.  相似文献   

12.
DNAzymes are single stranded DNA molecules that exhibit catalytic activity and are exploited in medicine, biology and material sciences. Development in this area is related to the many advantages of DNAzymes over conventional protein enzymes, such as thermal stability and simpler preparation. DNAzymes with peroxidase-like activity have recently attracted great interest. To assure such catalytic activity, oligonucleotides have to adopt a G-quadruplex structure, which can bind the hemin molecule. This system facilitates a redox reaction between the target molecule and hydrogen peroxide, which results in the appearance of an oxidized target molecule (product). DNAzymes with peroxidase-mimicking activity have great potential in bioanalytical chemistry. This review presents fundamentals concerning the design and engineering of DNAzymes with peroxidase-like activity, describes their properties and spectral characteristics and shows how DNAzymes can contribute to bioanalytical research. Examples of bioanalytical applications of DNAzymes with peroxidase-like activity include nucleic acid probes with DNAzyme labels for the detection of specific DNA sequences in colorimetric or chemiluminescent assays. Assays for telomerase or methyltransferase activity, which are potential targets in anticancer therapy, are also described in this review. Other applications include the determination of metal cations such as Ag(+), K(+), Hg(2+), Pb(2+) or Cu(2+) and amplified detection of small molecules such as adenosine, cocaine or AMP and proteins such as lysozyme or thrombin. In the last decade, DNAzymes have become part of numerous applications in many areas of science from chemistry to biology to medicine.  相似文献   

13.
In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H2O2) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H2O2 in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas.  相似文献   

14.
《中国化学快报》2022,33(10):4683-4686
Aerogels have become a hot topic of research due to their extremely low density and special interconnected structure as well as their enzyme-like activity. The development of new multifunctional nano-enzyme aerogels with high activity and good stability is still a considerable challenge. In this paper, AuRu aerogels with peroxidase and oxidase activities were synthesized using a simple one-step method and successfully used to construct colorimetric sensors for the detection of Fe2+ and glucose based on their enzyme-like activities. Furthermore, we are fortunate to find that AuRu aerogels have good photothermal properties. This suggests that AuRu aerogels can be used not only for in vitro testing but also for promising applications such as disease treatment.  相似文献   

15.
Chen W  Chen J  Feng YB  Hong L  Chen QY  Wu LF  Lin XH  Xia XH 《The Analyst》2012,137(7):1706-1712
Water-soluble cupric oxide nanoparticles are fabricated via a quick-precipitation method and used as peroxidase mimetics for ultrasensitive detection of hydrogen peroxide and glucose. The water-soluble CuO nanoparticles show much higher catalytic activity than that of commercial CuO nanoparticles due to their higher affinity to hydrogen peroxide. In addition, the as-prepared CuO nanoparticles are stable over a wide range of pH and temperature. This excellent stability in the form of aqueous colloidal suspensions makes the application of the water-soluble CuO nanoparticles easier in aqueous systems. A colorimetric assay for hydrogen peroxide and glucose has been established based on the catalytic oxidation of phenol coupled with 4-amino-atipyrine by the action of hydrogen peroxide. This analytical platform not only confirms the intrinsic peroxidase-like activity of the water-soluble cupric oxide nanoparticles, but also shows its great potential applications in environmental chemistry, biotechnology and medicine.  相似文献   

16.
Nanozymes have attracted wide attention for the unique advantages of low cost, high stability and designability. Molecularly imprinted polymers (MIPs) have demonstrated great potential as a new type of nanozymes due to their excellent specificity and high affinity. However, effective approaches for creating molecularly imprinted nanozymes still remain limited. Herein, reverse microemulsion template docking surface imprinting (RMTD-SI) is reported as a new approach for the rational design and engineering of nanozymes with free substrate access for the ligation of ssDNA sequences. As a proof of the principle, octa-deoxyribonucleotide-imprinted nanoparticles were successfully prepared. Using tetradeoxyribonucleotides and octa-deoxyribonucleotide as substrates, the properties, catalytic activity and behavior of the imprinted nanoparticles were thoroughly investigated. The imprinted nanozyme exhibited an enhanced reaction speed (by up to 41-fold) and good sequence selectivity towards substrate tetra-deoxyribonucleotides. More interestingly, due to the open substrate access, the imprinted nanozyme also allowed the ligation of a ssDNA that fully matched with the imprinted cavity and other ssDNA substrates to form longer sequences, but at the price of substrate selectivity. Thus, this study provides not only a new avenue to the rational design and synthesis of molecularly imprinted nanozymes but also new insights of their catalytic behavior.  相似文献   

17.
Gold nanoparticles (AuNPs) have been demonstrated to serve as effective nanomaterial‐based enzyme mimetics (nanozymes) for a number of enzymatic reactions under mild conditions. The intrinsic glucose oxidase and peroxidase activities of single AuNPs and Ag–Au nanohybrids, respectively, were investigated by single NP collision electrochemical measurements. A significantly high turnover number of nanozymes was obtained from individual catalytic events compared with the results from the classical, ensemble‐averaged measurements. The unusual enhancement of catalytic activity of single nanozymes is believed to originate from the high accessible surface area of monodispersed NPs and the high activities of carbon‐supported NPs during single‐particle collision at a carbon ultramicroelectrode. This work introduces a new method for the precise characterization of the intrinsic catalytic activities of nanozymes, giving further insights to the design of high‐efficiency nanomaterial catalysts.  相似文献   

18.
Rhodium (Rh) is a non-toxic transition metal used as various nanomaterials with unique structures and properties. Rh-based nanozymes can mimic the activities of natural enzymes, overcome the limitation of the application scope of natural enzymes, and interact with various biological microenvironments to play a variety of functions. Rh-based nanozymes can be synthesized in various ways, and different modification and regulation methods can also enable users to control catalytic performance by adjusting enzyme active sites. The construction of Rh-based nanozymes has attracted great interest in the biomedical field and impacted the industry and other areas. This paper reviews the typical synthesis and modification strategies, unique properties, applications, challenges, and prospects of Rh-based nanozymes. Next, the unique features of Rh-based nanozymes are emphasized, including adjustable enzyme-like activity, stability, and biocompatibility. In addition, we discuss Rh-based nanozymes biosensors and detection, biomedical therapy, and industrial and other applications. Finally, the future challenges and prospects of Rh-based nanozymes are proposed.  相似文献   

19.
《中国化学快报》2021,32(9):2715-2728
With high catalytic activity and stability, nanozymes have huge advantage in generating or eliminating the reactive oxygen species (ROS) due to their intrinsic enzyme-mimicking abilities, therefore attracting wide attention in ROS-related disease therapy. To better design nanozyme-based platforms for ROS-related biological application, we firstly illustrate the catalytic mechanism of different activities, and then introduce different strategies for using nanozymes to augment or reduce ROS level for the applications in cancer therapy, pathogen infection, neurodegeneration, etc. Finally, the challenges and future opportunities are proposed for the development and application of nanozymes.  相似文献   

20.
Nanomaterials with enzyme-like activities, coined nanozymes, have been researched widely as they offer unparalleled advantages in terms of low cost, superior activity, and high stability. The complex structure and composition of nanozymes has led to extensive investigation of their catalytic sites at an atomic scale, and to an in-depth understanding of the biocatalysis occurring. Single-atom catalysts (SACs), characterized by atomically dispersed active sites, have provided opportunities for mimicking metalloprotease and for bridging the gap between natural enzymes and nanozymes. In this Minireview, we illustrate the unique properties of nanozymes and we discuss recent advances in the synthesis, characterization, and applications of SACs. Subsequently, we outline the impressive progress made in single-atom nanozymes and we discuss their applications in sensing, degradation of organic pollutants, and in therapeutic roles. Finally, we present the major challenges and opportunities remaining for a successful marriage of nanozymes and SACs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号