首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Photoirradiation of acetone solutions of 2,3‐diallyl‐6,7‐dihydro‐5H‐2a‐thia(2a‐SIV)‐2,3,4a, 7a‐tetraazacyclopent[cd]indene‐ 1,4(2H,3H)‐dithione ( 1 ) in the presence of excess thioacetic acid and thiobenzoic acid afforded addition products, 2,3‐bis(3‐acetylthiopropyl)‐ and 2,3‐bis(3‐benzoylthiopropyl)‐6,7‐dihydro‐5H‐2a‐thia(2a‐SIV)2,3,4a, 7a‐tetraazacyclopent[cd]indene‐1,4(2H,3H)‐dithiones, respectively, in good yields. These photoaddition reactions were facilitated by the addition of oxygen.  相似文献   

2.
Two new glycoluril derivatives, namely diethyl 6‐ethyl‐1,4‐dioxo‐1,2,2a,3,4,6,7,7b‐octahydro‐5H‐2,3,4a,6,7a‐pentaazacyclopenta[cd]indene‐2a,7b‐dicarboxylate, C14H21N5O6, (I), and 6‐ethyl‐2a,7b‐diphenyl‐1,2,2a,3,4,6,7,7b‐octahydro‐5H‐2,3,4a,6,7a‐pentaazacyclopenta[cd]indene‐1,4‐dione, C20H21N5O2, (II), both bearing two free syn‐urea NH groups and two ureidyl C=O groups, assemble the same one‐dimensional chains in the solid state running parallel to the [010] direction via N—H...O hydrogen bonds. Furthermore, the chains of (I) are linked together into two‐dimensional networks via C—H...O hydrogen bonds.  相似文献   

3.
12π-Tetraazapentalenes, 2,3-disubstituted 6,7-dihydro-5H-2a-thia(2a-SIV)-2,3,4a,7a-tetraazacyclopent-[cd]indene-1,4(2H,3H)-dithiones, 1 and 7 , reacted with excess alkyl or aryl isothiocyanates and isocyanates to afford mono- and di-alkyl or aryl substituted tetraazapentalene derivatives which have the thiocarbonyl and carbonyl groups.  相似文献   

4.
A series of 2‐substituted 2H‐thieno[3,4‐e][1,2,4]thiadiazin‐3(4H)‐one 1,1‐dioxides ( 2 ), 2‐substituted 2H‐thieno[2,3‐e][1,2,4]thiadiazin‐3(4H)‐one 1,1‐dioxides ( 3 ), 2‐substituted 4,6‐dihydropyrazolo[4,3‐e]‐[1,2,4]thiadiazin‐3(2H)‐one 1,1‐dioxides ( 4 ), 2‐substituted 2,3‐dihydrooxazolo[3,2‐b]thieno[3,4‐e]‐[1,2,4]thiadiazine 5,5‐dioxides, ( 5 ), 6‐substituted 6,7‐dihydro‐2H‐oxazolo[3,2‐b]pyrazolo[4,3‐e][1,2,4]thia‐diazine 9,9‐dioxides ( 6 ) and 7‐substituted 6,7‐dihydro‐2H‐oxazolo[3,2‐b]pyrazolo[4,3‐e][1,2,4]thiadiazine 9,9‐dioxides ( 7 ) were synthesized as potential psychotropic agents.  相似文献   

5.
On Rearrangements by Cyclialkylations of Arylpentanols to 2,3‐Dihydro‐1 H ‐indene Derivatives. Part 1. An Unexpected Rearrangement by the Acid‐Catalyzed Cyclialkylation of 4‐(2‐Chlorophenyl)‐2,4‐dimethyl pentan‐2‐ol under Formation of trans ‐4‐Chloro‐2,3‐dihydro‐1,1,2,3‐tetramethyl‐1 H ‐indene The acid‐catalyzed cyclialkylation of 2,4‐dimethyl‐4‐phenylpentan‐2‐ol led exclusively to the expected product, 2,3‐dihydro‐1,1,3,3‐tetramethyl‐1H‐indene. However, analogous cyclialkylation of 4‐(2‐chlorophenyl)‐2,4‐dimethylpentan‐2‐ol ( 1 ) gave a ca. 1 : 1 mixture of 4‐chloro‐2,3‐dihydro‐1,1,3,3‐tetramethyl‐1H‐indene ( 2 ) and of trans‐4‐chloro‐2,3‐dihydro‐1,1,2,3‐tetramethyl‐1H‐indene ( 3 ; Scheme 1). The specific action of the Cl substituent is investigated and a mechanism for this unexpected frame‐work transposition proposed.  相似文献   

6.
Two novel hypervalent selenium(IV) compounds stabilized by intramolecular interactions, namely 6‐phenyl‐6,7‐dihydro‐5H‐2,3‐dioxa‐2aλ4‐selenacyclopenta[hi]indene, C14H12O2Se, 14 , and 5‐phenyl‐5,6‐dihydro‐4H‐benzo[c][1,2]oxaselenole‐7‐carbaldehyde, C14H12OSe2, 15 , have been synthesized by the reaction of 2‐chloro‐1‐formyl‐3‐(hydroxymethylene)cyclohexene with in‐situ‐generated disodium diselenide (Na2Se2). The title compounds were characterized by FT–IR spectroscopy, ESI–MS, and single‐crystal X‐ray diffraction studies. For 14 , there is whole‐molecule disorder, with occupancies of 0.605 (10) and 0.395 (10), a double bond between C and Se, and the five‐membered selenopentalene rings are coplanar. The packing is stabilized by π–π stacking interactions involving one of the five‐membered Se/C/C/C/O rings [centroid–centroid (CgCg) distance = 3.6472 (18) Å and slippage = 1.361 Å], as well as C—H…π interactions involving a C—H group and the phenyl ring. In addition, there are bifurcated C—H…Se,O interactions which link the molecules into ribbons in the c direction. For 15 , the C—Se bond lengths are longer than those of 14 . The two five‐membered rings are coplanar. There are no π–π or C—H…π interactions; however, molecules are linked by C—H…O interactions into centrosymmetric dimers, with graph‐set notation R22(16).  相似文献   

7.
On Rearrangements by Cyclialkylations of Arylpentanols to 2,3‐Dihydro‐1 H ‐indene Derivatives. Part 3. The Acid‐Catalyzed Cyclialkylation of 3,4‐Dimethyl‐ and 3‐([ 2 H 3 ]Methyl)‐4‐methyl‐3‐phenylpentan‐2‐ol The cyclialkylation of 2‐([2H3]methyl)‐4‐methyl‐4‐phenyl[1,1,1‐2H3]pentan‐3‐ol ( 4 ) yielded a 1 : 1 mixture of 1,1‐di([2H3]methyl)‐2,3‐dimethyl‐1H‐indene ( 5 ) and of 2,3‐dihydro‐2,3‐di([2H3]methyl)‐1,1‐dimethyl‐1H‐indene ( 6 ) (Scheme 1) [1]. However, it was not clear whether the transposition takes place through the successive migration of a Ph, a Me and again the Ph group (Scheme 2, Path A: shift IV → VII → VIIa ) or through Ph‐, Me‐, and then i‐Pr‐group (Scheme 2, Path B: IV → VII → VIIb ). The cyclialkylation of 3‐([2H3]methyl)‐4‐methyl‐3‐phenylpentan‐2‐ol ( 7 ) yielded only one product, the 2,3‐dihydro‐2‐([2H3]methyl)‐1,1,3‐trimethyl‐1H‐indene ( 8 ), in accordance with the migrations according to Path A. This result is also a support for the total mechanism proposed for the cyclialkylation of 4 (Scheme 2). The transition of a tertiary to a secondary carbenium ion is not definitely ensured (see [1]).  相似文献   

8.
Water hyacinth (Eichhornia crassipes) is a cause of great concern in terms of environmental and agricultural impacts in many parts of the world. Phytochemical investigation of water hyacinth led to the isolation of six new phenylphenalenes, 2,3‐dihydro‐3,9‐dihydroxy‐5‐methoxy‐4‐phenyl‐1H‐phenalen‐1‐one ( 1 ), 2,3‐dihydro‐8‐methoxy‐9‐phenyl‐1H‐phenalene‐1,4‐diol ( 2 ), 2,3‐dihydro‐4,8‐dimethoxy‐9‐phenyl‐1H‐phenalen‐1‐ol ( 3 ), 2,3‐dihydro‐9‐(4‐hydroxyphenyl)‐8‐methoxy‐1H‐phenalene‐1,4‐diol ( 4 ), 2,6‐dimethoxy‐9‐phenyl‐1H‐phenalen‐1‐one ( 5 ), and 7‐(4‐hydroxyphenyl)‐5,6‐dimethoxy‐1H‐phenalen‐1‐one ( 6 ), together with the four known compounds 7 – 10 . Their structures were elucidated by spectrometric methods including 1D‐ and 2D‐NMR, and MS analysis. These compounds may be involved in allelopathic interactions of water hyacinth with neighboring plants.  相似文献   

9.
On Rearrangements by Cyclialkylations of Arylpentanols to 2,3‐Dihydro‐1 H ‐indene Derivatives. Part 4. The Acid‐Catalyzed Cyclialkylation of 2,4‐Dimethyl‐2‐phenyl[3‐ 13 C]pentan‐3‐ol The cyclialkylation of 2,4‐dimethyl‐2‐phenyl[3‐13C]pentan‐3‐ol ( 4 ) gives only 2,3‐dihydro‐1,1,2,3‐tetramethyl‐1H‐[3‐13C]indene ( 6 ) (cf. Scheme 2) and not a trace of the isotopomeric 2,3‐dihydro‐1,1,2,3‐tetramethyl‐1H‐[2‐13C]indene ( 5 ). The mechanism proposed in [3] for the cyclialkylation of 4 (cf. Scheme 2, Path A) has, therefore, to be abandoned. The mechanism of Scheme 2, Path B, is proposed and may be considered as definitively established.  相似文献   

10.
On Rearrangements by Cyclialkylations of Arylpentanols to 2,3‐Dihydro‐1 H ‐indene Derivatives. Part 2. An Unexpected Rearrangement by the Acid‐Catalyzed Cyclialkylation of 2,4‐Dimethyl‐2‐phenylpentan‐3‐ol under Formation of trans ‐2,3‐Dihydro‐1,1,2,3‐tetramethyl‐1 H ‐indene The acid catalyzed‐cyclialkylation of 4‐(2‐chloro‐phenyl)‐2,4‐dimethylpentan‐2‐ol ( 1 ) gave two products: 4‐chloro‐2,3‐dihydro‐1,1,3,3‐tetramethyl‐1H‐indene ( 2 ) and also trans‐4‐chloro‐2,3‐dihydro‐1,1,2,3‐tetramethyl‐1H‐indene ( 3 ). A mechanism was proposed in Part 1 (cf. Scheme 1) for this unexpected rearrangement. This mechanism would mainly be supported by the result of the cyclialkylation of 2,4‐dimethyl‐2‐phenylpentan‐3‐ol ( 4 ), which, with respect to the similarity of ion II in Scheme 1 and ion V in Scheme 2, should give only product 5 . This was indeed the experimental result of this cyclialkylation. But the result of the cyclialkylation of 1,1,1,2′,2′,2′‐hexadeuterated isomer [2H6]‐ 4 of 4 (cf. Scheme 3) requires a different mechanism as for the cyclialkylation of 1 . Such a mechanism is proposed in Schemes 5 and 6. It gives a satisfactory explanation of the experimental results and is supported by the result of the cyclialkylation of 2,4‐dimethyl‐3‐phenylpentan‐3‐ol ( 9 ; Scheme 7). The alternative migration of a Ph or of an i‐Pr group (cf. Scheme 6) is under further investigation.  相似文献   

11.
A new method was developed for the synthesis of 6,7‐dihydro‐5H‐pyrimido[4,5‐e][1,4]diazepin‐8(9H)‐one derivatives. The key to construct the pyrimido[4,5‐e][1,4]diazepine core is the intramolecular amidation of N‐((4‐amino‐6‐chloropyrimidin‐5‐yl)methyl)‐substituted amino acid esters. This methodology was validated through the preparation of 13 representative 6,7‐dihydro‐5H‐pyrimido[4,5‐e][1,4]diazepin‐8(9H)‐ones in moderate to good yields. J. Heterocyclic Chem., (2011).  相似文献   

12.
3‐Aminoquinoline‐2,4‐diones were stereoselectively reduced with NaBH4 to give cis‐3‐amino‐3,4‐dihydro‐4‐hydroxyquinolin‐2(1H)‐ones. Using triphosgene (=bis(trichloromethyl) carbonate), these compounds were converted to 3,3a‐dihydrooxazolo[4,5‐c]quinoline‐2,4(5H,9bH)‐diones. The deamination of the reduction products using HNO2 afforded mixtures of several compounds, from which 3‐alkyl/aryl‐2,3‐dihydro‐1H‐indol‐2‐ones and their 3‐hydroxy and 3‐nitro derivatives were isolated as the products of the molecular rearrangement.  相似文献   

13.
Six derivatives of 4‐amino‐1,5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐3‐one (4‐aminoantipyrine), C11H13N3O, (I), have been synthesized and structurally characterized to investigate the changes in the observed hydrogen‐bonding motifs compared to the original 4‐aminoantipyrine. The derivatives were synthesized from the reactions of 4‐aminoantipyrine with various aldehyde‐, ketone‐ and ester‐containing molecules, producing (Z)‐methyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C16H19N3O3, (II), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C17H21N3O3, (III), ethyl 2‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]cyclohex‐1‐enecarboxylate, C20H25N3O3, (IV), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]‐3‐phenylacrylate, C22H23N3O3, (V), 2‐cyano‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C14H14N4O2, (VI), and (E)‐methyl 4‐{[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]methyl}benzoate, C20H19N3O3, (VII). The asymmetric units of all these compounds have one molecule on a general position. The hydrogen bonding in (I) forms chains of molecules via intermolecular N—H...O hydrogen bonds around a crystallographic sixfold screw axis. In contrast, the formation of enamines for all derived compounds except (VII) favours the formation of a six‐membered intramolecular N—H...O hydrogen‐bonded ring in (II)–(V) and an intermolecular N—H...O hydrogen bond in (VI), whereas there is an intramolecular C—H...O hydrogen bond in the structure of imine (VII). All the reported compounds, except for (II), feature π–π interactions, while C—H...π interactions are observed in (II), C—H...O interactions are observed in (I), (III), (V) and (VI), and a C—O...π interaction is observed in (II).  相似文献   

14.
Regioselective methods for synthesis of hitherto unreported both 6,7‐dihydro‐1,2‐benzisoxazol‐4(5H)‐ones and 6,7‐dihydro‐2,1‐benzisoxazol‐4(5H)‐ones with perfluoroalkyl or halogenodifluoromethyl substituents have been developed. 3‐Polyfluoroalkyl‐6,7‐dihydro‐1,2‐benzisoxazol‐4(5H)‐ones were prepared by the cyclocondensation of 2‐polyfluoroalkanoylcyclohexane‐1,3‐diones with hydroxylamine. The regioisomeric 3‐polyfluoroalkyl‐6,7‐dihydro‐2,1‐benzisoxazol‐4(5H)‐ones were synthesized by the transformation of 2‐polyfluoroalkanoylcyclohexane‐1,3‐diones into their vinylogous chlorides, followed by the interaction of obtained crude 3‐chloro‐2‐polyfluoroalkanoyl‐2‐cyclohexen‐1‐ones with sodium azide in dimethylformamide.  相似文献   

15.
Macrocyclic compounds 5a‐i bearing two tetraazathiapentalene frameworks were synthesized by the reaction of 10‐S‐3 tetraazathiapentalene derivatives 3a‐f with compounds having various diisothiocyanate functions 4a‐e. The reduction of the macrocyclic compounds with NaBH4 afforded the ring‐opened macrocyclic compounds 11a‐b and 11e‐h by elimination of the hypervalent sulfur. The structures of these compounds were established by their spectral data and also by the X‐ray crystallographic analysis of lla. The other ring‐opened macrocyclic compounds 14a and 14e‐h that bear four thiourea groups were synthesized by alkaline hydrolysis of 5a and 5e‐h in that elimination of the C=SIV moiety in the tetraazathiapentalene rings occurred.  相似文献   

16.
6H,8H-Isoquino-1,3-benzothiazin-8-ones have been prepared by reaction of 6,7-dimethoxy-2H-1,3-benzo-thiazines with homophthalic anhydride and by photocyclization of 3-benzoyl-4-methylene-6,7-dimethoxy 2H-1,3-benzothiazine. The compounds are thia analogues of protoberberine alkaloids containing a sulfur atom at C-5 and a lactam function at C-8. The mass spectra of the title compounds are discussed.  相似文献   

17.
By reaction with sodium ethoxide and as a function of their structures, 2‐[(1‐alkyl(aryl)‐4‐cyano‐6,7‐dihydro‐5H‐cyclopenta[c ]pyridin‐3‐yl)oxy]acetamides 11 gave 1‐amino‐5‐alkyl(aryl)‐7,8‐dihydro‐6H‐cyclopenta[d ]furo[2,3‐b ]pyridine‐2‐carboxamides 10 and/or 1‐alkyl(aryl)‐3‐amino‐6,7‐dihydro‐5H‐cyclopenta[c ]pyridine‐4‐carbonitriles 12 .  相似文献   

18.
The reaction of compound 2‐amino‐3‐cyano‐6‐methylquinoxaline‐1,4‐dioxide with cyclohexanone and dimedone in dimethylformamide in the presence of anhydrous ZnCl2 under Friedländer‐type cyclocondensation gave compounds 12‐amino‐9‐methyl‐1,2,3,4,12,12a‐hexahydroquinolino[2,3‐b]quinoxaline‐6,11‐dioxide ( 4 ), 7‐methyl‐4‐oxo‐3,4‐dihydro‐1H‐spiro[benzo[g]pteridine‐2,1′‐cyclohexane]5,10‐dioxide ( 5 ), and 12‐amino‐3,3,9‐trimethyl‐1‐oxo‐1,2,3,4,12,12a‐hexahydroquinolino[2,3‐b]quinoxaline‐6,11‐dioxide ( 6 ); (R)‐3′,3′,7‐trimethyl‐4,5′‐dioxo‐3,4‐dihydro‐1H‐spiro[benzo[g]pteridine‐2,1′‐cyclohexane]5,10‐dioxide ( 7 ) were achieved and evaluated their biological activity as antibacterial and antifungal activities and antitumor evaluation, and also, the density functional theory calculations were evaluated.  相似文献   

19.
A facile method based on high‐performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC/(–)ESI‐MSn) has been established for the analyses of polyphenol compounds in the root and stems of Parthenocissus laetevirens. Two characteristic fragments [C3O2 (68 Da) and C2H2O (42 Da)] were utilized for the structural identification of polyphenols. Based on the reference standards, the fragment C3O2 was presented when the compound possessed a 2,3‐dihydro‐1H‐indene‐4, 6‐diol moiety. Meanwhile, the C2H2O fragment (42 Da) yielded from the resorcinol ring was confirmed by resveratrol and three synthesized compounds identified as (E)‐5‐styrylbenzene‐1,3‐diol, (E)‐4‐styrylphenol and (E)‐4‐(3,4,5‐trimethoxystyryl)phenol. FTICR‐MSn was performed to further confirm the structures of the fragments. Overall, 15 polyphenol compounds were characterized. Three polyphenol compounds were initially and tentatively characterized from P. laetevirens for the first time, and one was proposed as a novel compound. Furthermore, a pair of stereoisomers was readily distinguished by breakdown curves, and the trans‐, cis‐isomers could be identified by HPLC/DAD‐UV spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents the synthesis of a series of 5,6‐dihydro‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ring system derivatives with a [1,2,3]triazole ring bonded in position 2. The procedure is based on cycloaddition of substituted alkyl azides to the terminal triple bond of 5,6‐dihydro‐2‐ethynyl‐9‐methyl‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 4 ). This cycloaddition produced two regioisomers ?5,6‐dihydro‐9‐methyl‐2‐(1‐substituted‐1H‐[1,2,3]triazol‐5‐yl)‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 7 ) and 2‐(1‐substituted‐1H‐[1,2,3]triazol‐4‐yl) derivative 8 . The required 2‐ethynyl deriva tive 4 was obtained from the starting 2‐unsubstituted compound 1 by bromination to yield the 2‐bromo derivative 2 , which was converted by Sonogashira reaction to trimethylsilylethyne 3 and finally, the protective trimethylsilyl group was removed by hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号