首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.

A new, sensitive, stability indicating gradient RP-LC related substances and assay method has been developed for the quantitative determination of entacapone in bulk drugs. Efficient chromatographic separation was achieved on a C18 stationary phase with simple mobile phase combination of buffer and acetonitrile. Buffer consisted of 0.1% orthophosphoric acid, delivered in a gradient mode and quantitation was carried out using ultraviolet detection at 220 nm with a flow rate of 1.5 mL min−1. In the developed LC method the resolution (R s ) between entacapone and its three potential process impurities were found to be >2.0. Regression analysis showed an r 2 value (correlation coefficient) >0.99 for entacapone and its three potential impurities. This method was capable to detect all three process impurities of entacapone at a level of 0.003% with respect to test concentration of 0.5 mg mL−1 for a 20 μL injection volume. The inter- and intra-day precision values for all three impurities and for entacapone was found to be within 2.0% RSD. The method has shown good and consistent recoveries for entacapone in bulk drugs (99.2–101.5%) and its three impurities (99.5–102.2%). The test solution was found to be stable in diluent for 48 h. The drug substances were subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Considerable degradation was found to occur in acid stress, base stress and oxidative conditions. The stressed test solutions were assayed against the qualified working standard of entacapone and the mass balance in each case was close to 99.7% indicating that the developed method was stability-indicating. The developed RP-LC method was validated with respect to linearity, accuracy, precision and robustness.

  相似文献   

2.
A novel, sensitive, stability indicating RP-LC method has been developed for the quantitative determination of deferasirox, its related impurities in both bulk drugs and pharmaceutical dosage forms. Efficient chromatographic separation was achieved on a C18 stationary phase with simple mobile phase combination delivered in an isocratic mode and quantitation was by ultraviolet detection at 245 nm. The mobile phase consisted of buffer, acetonitrile and methanol (50:45:5, v/v) delivered at a flow rate of 1.0 mL min?1. Buffer consisted of 10 mM potassium dihydrogen orthophosphate monohydrate, pH adjusted to 3.0 by using orthophosphoric acid. In the developed LC method the resolution (R s ) between deferasirox and its four potential impurities was found to be greater than 2.0. Regression analysis showed an r value (correlation coefficient) greater than 0.999 for deferasirox and its four impurities. This method was capable to detect all four impurities of deferasirox at a level of 0.002% with respect to test concentration of 0.5 mg mL?1 for a 10 μL injection volume. The inter- and intra-day precision values for all four impurities and for deferasirox was found to be within 2.0% RSD. The method showed good and consistent recoveries for deferasirox in bulk drugs (98.3–101.1%), pharmaceutical dosage forms (100.2–103.1%) and for its all the four impurities (99.7–102.1%). The test solution was found to be stable in methanol for 48 h. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Considerable degradation was found to occur in acid stress hydrolysis. The stress samples were assayed against a qualified reference standard and the mass balance was found close to 99.95%. The developed RP-LC method was validated with respect to linearity, accuracy, precision and robustness.  相似文献   

3.
A novel, sensitive, stability-indicating gradient RP-LC method has been developed for quantitative analysis of balsalazide disodium and its related impurities both in the bulk drug and in pharmaceutical dosage forms. Efficient chromatographic separation was achieved on a C18 stationary phase with a simple mobile-phase gradient prepared from methanol and phosphate buffer (10 mm potassium dihydrogen orthophosphate monohydrate, adjusted to pH 2.5 by addition of orthophosphoric acid). The mobile-phase flow rate was 1.0 mL min?1. Quantification was achieved by use of ultraviolet detection at 240 nm. Under these conditions resolution of balsalazide disodium from its three potential impurities was greater than 2.0. Regression analysis resulted in a correlation coefficient greater than 0.99 for balsalazide disodium and all three impurities. This method was capable of detecting the three impurities at 0.003% of the test concentration of 0.3 mg mL?1, using an injection volume of 10 μL. Inter-day and intra-day precision for all three impurities and for balsalazide disodium was within 2.0% RSD. Recovery of balsalazide disodium from the bulk drug (99.2–101.5%) and from pharmaceutical dosage forms (99.8–101.3%), and recovery of the three impurities (99.1–102.1%) was consistently good. The test solution was found to be stable in 70:30 (v/v) methanol–water for 48 h. When the drug was subjected to hydrolytic, oxidative, photolytic, and thermal stress, acidic and alkaline hydrolysis and oxidizing conditions led to substantial degradation. The RP-LC method was validated for linearity, accuracy, precision, and robustness.  相似文献   

4.
A simple, sensitive gradient RP-LC assay method has been developed for the quantitative determination of vardenafil HCl in bulk drug and in pharmaceutical dosage forms, used to treat erectile dysfunction. The developed method is also applicable for the related substances determination. Efficient chromatographic separation was achieved on a C18 stationary phase with simple mobile phase combination delivered in a gradient mode and quantification was carried out using ultraviolet detection at a flow rate of 1.0 mL min?1. In the developed LC method the resolution between vardenafil and its four potential impurities was found to be greater than 3.0. Regression analysis shows an r 2 value (correlation coefficient) greater than 0.99 for vardenafil and its four impurities. This method was capable of detecting all four impurities of vardenafil at a level of 0.009% with respect to test concentration of 1.0 mg mL?1 for a 10 μL injection volume. The method has shown good and consistent recoveries for vardenafil (98.4–100.6%) and its four impurities (93.5–106.2%). The test solution was found to be stable in the diluent for 48 h. Mass balance was found close to 99.4%.  相似文献   

5.
A simple, sensitive gradient RP-LC assay method has been developed for the quantitative determination of amtolmetin guacyl in bulk drug, used as anti-inflammatory drug. The developed method is also applicable for related substances determination. Efficient chromatographic separation was achieved on a C18 stationary phase with simple mobile phase combination delivered in a gradient mode and quantification was carried out using ultraviolet detection at 313 nm at a flow rate of 1.0 mL min?1. In the developed LC method the resolution between Amtolmetin Guacyl and its three potential impurities was found to be greater than 2.0. Regression analysis shows an r value (correlation coefficient) greater than 0.99 for amtolmetin guacyl and its three impurities. This method was capable to detect all three impurities of amtolmetin guacyl at a level of 0.002% with respect to test concentration of 0.5 mg mL?1 for a 10 μL injection volume. The inter- and intra-day precision values for all three impurities and for amtolmetin guacyl was found to be within 2.0% RSD at its specification level. The method has shown good and consistent recoveries for amtolmetin guacyl (99.2–101.5%) and its three impurities (94.5–104.8%). The test solution was found to be stable in diluent for 48 h. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Considerable degradation was found to occur in oxidative stress conditions. The stress samples were assayed against a qualified reference standard and the mass balance was found close to 99.6%. The developed RP-LC method was validated with respect to linearity, accuracy, precision and robustness.  相似文献   

6.
A novel liquid chromatographic method has been developed, and validated for the determination of tolterodine tartarate, for its potential three impurities in drug substances and drug products. Efficient chromatographic separation was achieved on a C8 stationary phase (150 × 4.6 mm, 3.5 μm particles) with a simple mobile phase combination delivered in an isocratic mode at a flow rate of 0.8 mL min?1 and quantitation was carried out using ultraviolet detection. Microwave assisted degradation procedure was employed for stress testing studies in addition to the conventional way of a refluxing method. The results of both studies were compared. In the developed LC method, the resolution between tolterodine and its three potential impurities was found to be greater than 2.0. Regression analysis shows an r value (correlation coefficient) greater than 0.999 for tolterodine and for its three impurities. This method was capable to detect all three impurities of tolterodine at a level below 0.0038% with respect to a test concentration of 0.5 mg mL?1 for a 10 μL injection volume. The inter- and intra-day precisions for all three impurities and for tolterodine were found to be within 1.1% RSD at its specification level. The method has shown good, consistent recoveries for tolterodine (98.9–101.6%) and for its three impurities (94.5–103.0%). The test solution was found to be stable in the diluent for 48 h. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation, as prescribed by ICH. Degradation was found to occur in alkaline stress condition, while the drug was stable to water hydrolysis, acid hydrolysis, oxidative stress, photolytic and thermal stress. The assay of stressed samples was calculated against a qualified reference standard and the mass balance was found close to 99.5%. Microwave degradations were very fast and comparable to the conventional way of the refluxing method. Robustness studies were carried out and suggested that system suitability parameters were unaffected by small changes in critical factors. The validated method was successfully applied for the determination of tolterodine tartarate in drug substances and drug products.  相似文献   

7.
A novel, sensitive, stability indicating RP-LC method has been developed for the quantitative determination of mitotane, its impurity in both bulk drugs and pharmaceutical dosage forms. Efficient chromatographic separation was achieved using a C18 stationary phase with simple mobile phase combination delivered in an isocratic mode and quantitation was by ultraviolet detection at a wavelength of 230 nm. The mobile phase consisted of buffer and acetonitrile (25:75, v/v) delivered at a flow rate of 1.0 mL min?1. Buffer consisted of 10 mM potassium dihydrogen orthophosphate monohydrate, pH adjusted to 2.5 by orthophosphoric acid. In the developed LC method the resolution (R s ) between mitotane and its impurity namely Imp-1 was found to be greater than 2.5. Regression analysis shows an r value (correlation coefficient) greater than 0.999 for mitotane and its impurity. This method was capable to detect the impurity of mitotane at a level of 0.003% with respect to test a concentration of 0.2 mg mL?1 for a 10 μL injection volume. The inter- and intra-day precision values for mitotane and its impurity was found to be within 2.0% RSD. The method has shown good and consistent recoveries for mitotane in bulk drugs (99.2–101.5%), pharmaceutical dosage forms (98.2–103.1%) and for its impurity (99.7–102.1%). The test solution was found to be stable in diluent for 48 h. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Considerable degradation was found to occur in basic stress hydrolysis. The stress samples were assayed against a qualified reference standard and the mass balance was found close to 99.97%. The developed RP-LC method was validated with respect to linearity, accuracy, precision and robustness.  相似文献   

8.
A simple reverse phase liquid chromatographic method was developed for the quantitative determination of desipramine hydrochloride and its related impurities in bulk drugs which is also stability-indicating. During the forced degradation at hydrolysis, oxidative, photolytic and thermal stressed conditions, the degradation results were only observed in the oxidative stress condition. The blend of the degradation product and potential impurities were used to optimize the method by an YMC Pack Pro C18 stationary phase. The LC method employs a linear gradient elution with the water–acetonitrile–trifluoroacetic acid as mobile phase. The flow rate was 1.0 mL min?1 and the detection wavelength 215 nm. The stressed samples were quantified against a qualified reference standard and the mass balance was found close to 99.0% (w/w) when the response of the degradant was considered to be equal to the analyte (i.e. desipramine). The developed RP-LC method was validated in agreement with ICH requirements.  相似文献   

9.
A novel liquid chromatographic method for analysis three potential impurities in brimonidine tartrate drug substance has been developed and validated. Efficient chromatographic separation was achieved on a C8 column (250 mm × 4.6 mm, 5-μm particles) with a simple mobile-phase gradient at a flow rate of 1.0 mL min?1. Quantification was achieved by use of ultraviolet detection at 248 nm. Resolution between brimonidine tartrate and its three potential impurities was greater than 3.0. Regression analysis showed the r value (correlation coefficient) was >0.999 for brimonidine and its three impurities. The method was capable of detecting all three impurities of brimonidine tartrate at levels below 0.07 μg in a test concentration of brimonidine tartrate of 1.0 mg mL?1 and for an injection volume of 10 μL. A solution of brimonidine tartrate in acetonitrile–water 2:8 (v/v) was stable for 48 h. The drug was subjected to stress conditions as prescribed by the ICH. Degradation was found to occur slightly under oxidative stress conditions but the drug was stable to aqueous, acidic, and basic hydrolysis, and photolytic and thermal stress. The assay of the stressed samples was calculated relative to a qualified reference standard and the mass balance was found close to 99.8%. The method was validated for linearity, accuracy, precision, and robustness.  相似文献   

10.
A novel liquid chromatographic method has been developed and validated for the determination of ranolazine, its potential four impurities in drug substance and drug products. Efficient chromatographic separation was achieved on a C18 stationary phase (150 × 4.6 mm, 3.0 microns particles) with simple mobile phase combination delivered in gradient mode at a flow rate of 1.0 mL min?1 at 210 nm. In the developed method, the resolution between ranolazine and its four potential impurities was found to be greater than 2.0. Regression analysis shows an r value (correlation coefficient) greater than 0.999 for ranolazine and for its four impurities. This method was capable to detect all four impurities of ranolazine at a level below 0.004% with respect to test concentration of 1.0 mg mL?1 for a 10 μL injection volume. The method has shown good, consistent recoveries for ranolazine (98.8–101.1%) and for its four impurities (97.2–100.3). The test solution was found to be stable in the diluent for 48 h. The drug was subjected to stress conditions. The mass balance was found close to 99.5%.  相似文献   

11.
A simple, specific, precise and accurate reverse phase liquid chromatographic (RP-LC) method has been developed for the simultaneous determination of etodolac and acetaminophen in tablet dosage form. The chromatographic separation was achieved on a BDS Hypersil C18, 100 mm × 4.6 mm, 5 μm column at a detector wavelength of 274 nm using an isocratic mobile phase consisting of a mixture of 0.05% aqueous orthophosphoric acid and acetonitrile in the ratio of 50:50 (v/v) at a flow rate of 1.0 mL min?1. The retention times for etodolac and acetaminophen were found to be 1.32 and 4.24 min, respectively. The method was validated for the parameters like specificity, linearity, precision, accuracy and robustness. The method was found to be specific and stability indicating as no interfering peaks of impurities, degradent and excipients were observed. The square of correlation coefficients (R 2) for etodolac and acetaminophen were 0.9996 and 0.9998 while percentage recoveries were 101.32 and 100.94%, respectively. Intra- and inter-day relative standard deviations for both the components were <2.0%. The proposed RP-LC method can be applied for the routine analysis of commercially available formulations of these drugs either as such or in combination.  相似文献   

12.
A simple, sensitive isocratic rapid resolution liquid chromatographic assay method has been developed for the quantitative determination of quetiapine hemifumarate in bulk active pharmaceutical ingredient, used for the treatment of schizophrenia. The developed method is also applicable for the process related impurities determination. Efficient chromatographic separation was achieved on a C18 stationary phase with simple mobile phase combination delivered in a isocratic mode and quantification was by ultraviolet detection at 225 nm at a flow rate of 1.0 mL min?1. In the developed LC method the resolution between quetiapine hemifumarate and its three potential impurities was found to be greater than 2.0. Regression analysis showed an r value (correlation coefficient) greater than 0.99 for quetiapine hemifumarate and its three impurities. This method was capable to detect all three impurities of quetiapine hemifumarate at a level of 0.003% with respect to test concentration of 1.0 mg mL?1 for a 3 μL injection volume. The bulk active pharmaceutical ingredient was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Considerable degradation was found to occur in oxidative stress conditions. The stress samples were assayed against a qualified reference standard and the mass balance was found close to 99.5%. The developed RR-LC method was validated with respect to linearity, accuracy, precision and robustness.  相似文献   

13.
The present paper describes the development of a stability indicating reversed phase column liquid chromatographic method for aripiprazole in the presence of its impurities and degradation products generated from forced decomposition studies. The drug substance was subjected to stress conditions of aqueous hydrolysis, oxidative, photolytic and thermal stress degradation. The degradation of aripiprazole was observed under acid hydrolysis and peroxide. The drug was found to be stable to other stress conditions attempted. Successful separation of the drug from the synthetic impurities and degradation products formed under stress conditions was achieved on an Inertsil phenyl column using a mixture of 0.2% trifluoroacetic acid and acetonitrile (55:45, v/v). The developed LC method was validated with respect to linearity, accuracy, precision, specificity and robustness. The assay method was found linear in the range of 25–200 μg mL?1 with a correlation coefficient of 0.9999 and the linearity of the impurities were established from LOQ to 0.3%. Recoveries of the assay and impurities were found between 97.2 and 104.6%. The developed LC method for the related substances and assay determination of aripiprazole can be used to evaluate the quality of regular production samples. It can also be used to test the stability samples of aripiprazole. To the best of our knowledge, the validated stability indicating LC method which separates all the impurities disclosed in this investigation was not published elsewhere.  相似文献   

14.
A new stereospecific LC method for the separation and quantification of moxifloxacin and its (R,R)-enantiomer in bulk drug was developed and validated by ligand-exchange liquid chromatography on a reversed phase column using aqueous mobile phase containing the chiral reagent l-isoleucine-Cu(II). The UV detector was operated at 293 nm. The flow rate of mobile phase was set at 0.9 mL min?1. The achiral ODS column offers good separation of the two enantiomers in less than 20 min. The test concentration was 1,000 μg mL?1 in the mobile phase. This method was capable of detecting the (R,R)-enantiomer of moxifloxacin up to 0.1 μg mL?1 for a 20 μL injection volume. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. There was no interference of degradants with the (R,R)-enantiomer in the developed method. The developed chiral RP-LC method was validated with respect to linearity, accuracy, precision and robustness. The percentage recovery for the (R,R)-enantiomer in bulk drug samples ranged from 98.1 to 104.4%. The test solution was found to be stable in the mobile phase for 48 h after preparation.  相似文献   

15.

A novel, sensitive, stability indicating RP-LC method has been developed for the quantitative determination of mitotane, its impurity in both bulk drugs and pharmaceutical dosage forms. Efficient chromatographic separation was achieved using a C18 stationary phase with simple mobile phase combination delivered in an isocratic mode and quantitation was by ultraviolet detection at a wavelength of 230 nm. The mobile phase consisted of buffer and acetonitrile (25:75, v/v) delivered at a flow rate of 1.0 mL min−1. Buffer consisted of 10 mM potassium dihydrogen orthophosphate monohydrate, pH adjusted to 2.5 by orthophosphoric acid. In the developed LC method the resolution (R s ) between mitotane and its impurity namely Imp-1 was found to be greater than 2.5. Regression analysis shows an r value (correlation coefficient) greater than 0.999 for mitotane and its impurity. This method was capable to detect the impurity of mitotane at a level of 0.003% with respect to test a concentration of 0.2 mg mL−1 for a 10 μL injection volume. The inter- and intra-day precision values for mitotane and its impurity was found to be within 2.0% RSD. The method has shown good and consistent recoveries for mitotane in bulk drugs (99.2–101.5%), pharmaceutical dosage forms (98.2–103.1%) and for its impurity (99.7–102.1%). The test solution was found to be stable in diluent for 48 h. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Considerable degradation was found to occur in basic stress hydrolysis. The stress samples were assayed against a qualified reference standard and the mass balance was found close to 99.97%. The developed RP-LC method was validated with respect to linearity, accuracy, precision and robustness.

  相似文献   

16.
Madhavi  A.  Naidu  A.  Subba Rao  D. V.  Srinivasu  P. 《Chromatographia》2009,69(11):1413-1419

A novel liquid chromatographic method for analysis three potential impurities in brimonidine tartrate drug substance has been developed and validated. Efficient chromatographic separation was achieved on a C8 column (250 mm × 4.6 mm, 5-μm particles) with a simple mobile-phase gradient at a flow rate of 1.0 mL min−1. Quantification was achieved by use of ultraviolet detection at 248 nm. Resolution between brimonidine tartrate and its three potential impurities was greater than 3.0. Regression analysis showed the r value (correlation coefficient) was >0.999 for brimonidine and its three impurities. The method was capable of detecting all three impurities of brimonidine tartrate at levels below 0.07 μg in a test concentration of brimonidine tartrate of 1.0 mg mL−1 and for an injection volume of 10 μL. A solution of brimonidine tartrate in acetonitrile–water 2:8 (v/v) was stable for 48 h. The drug was subjected to stress conditions as prescribed by the ICH. Degradation was found to occur slightly under oxidative stress conditions but the drug was stable to aqueous, acidic, and basic hydrolysis, and photolytic and thermal stress. The assay of the stressed samples was calculated relative to a qualified reference standard and the mass balance was found close to 99.8%. The method was validated for linearity, accuracy, precision, and robustness.

  相似文献   

17.

A simple reverse phase liquid chromatographic method was developed for the quantitative determination of desipramine hydrochloride and its related impurities in bulk drugs which is also stability-indicating. During the forced degradation at hydrolysis, oxidative, photolytic and thermal stressed conditions, the degradation results were only observed in the oxidative stress condition. The blend of the degradation product and potential impurities were used to optimize the method by an YMC Pack Pro C18 stationary phase. The LC method employs a linear gradient elution with the water–acetonitrile–trifluoroacetic acid as mobile phase. The flow rate was 1.0 mL min−1 and the detection wavelength 215 nm. The stressed samples were quantified against a qualified reference standard and the mass balance was found close to 99.0% (w/w) when the response of the degradant was considered to be equal to the analyte (i.e. desipramine). The developed RP-LC method was validated in agreement with ICH requirements.

  相似文献   

18.
A new liquid chromatographic (LC) method for simultaneous determination of lidocaine hydrochloride (LH) and tribenoside (TR) along with their related compounds in pharmaceutical preparations is described. Satisfactory LC separation of all analytes after the liquid–liquid extraction (LLE) procedure with ethanol was performed on a C18 column using a gradient elution of a mixture of acetonitrile and 0.1 % orthophosphoric acid as the mobile phase. The procedure was validated according to the ICH guidelines. The limits of detection (LOD) and quantification (LOQ) were 4.36 and 13.21 μg mL?1 for LH, 7.60 and 23.04 μg mL?1 for TR, and below 0.11 and 0.33 μg mL?1 for their impurities, respectively. Intra- and inter-day precision was below 1.97 %, whereas accuracy for all analytes ranged from 98.17 to 101.94 %. The proposed method was sensitive, robust, and specific allowing reliable simultaneous quantification of all mentioned compounds. Moreover, a comparative study of the RP-LC column classification based on the quantitative structure-retention relationships (QSRR) and column selectivity obtained in real pharmaceutical analysis was innovatively applied using factor analysis (FA). In the column performance test, the analysis of LH and TR in the presence of their impurities was carried out according to the developed method with the use of 12 RP-LC stationary phases previously tested under the QSRR conditions. The obtained results confirmed that the classes of the stationary phases selected in accordance with the QSRR models provided comparable separation for LH, TR, and their impurities. Hence, it was concluded that the proposed QSRR approach could be considered a supportive tool in the selection of the suitable column for the pharmaceutical analysis.  相似文献   

19.
A sensitive, simple, and accurate method for determination and pharmacokinetic study of ferulic acid and isoferulic acid in rat plasma was developed using a reversed-phase column liquid chromatographic (RP-LC) method with UV detection. Sample preparations were carried out by protein precipitation with the addition of methanol, followed by evaporation to dryness. The resultant residue was then reconstituted in mobile phase and injected into a Kromasil C18 column (250 × 4.6 mm i.d. with 5 μm particle size). The mobile phase was methanol-1% formic acid (33:67, v/v). The calibration plots were linear over the range 5.780–5780 ng·mL?1 for ferulic acid and 1.740–348.0 ng·mL?1 for isoferulic acid. Mean recoveries were 85.1% and 91.1%, respectively. The relative standard deviations (RSDs) of within-day and between-day precision were not above 15% for both of the analytes. The limits of quantification were 5.780 ng·mL?1 for ferulic acid and 1.740 ng·mL?1 for isoferulic acid. This RP-LC method was used successfully in pharmacokinetic studies of ferulic acid and isoferulic acid in rat plasma after intravenous injection of Guanxinning Lyophilizer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号