首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design of PtIV pro‐drugs as anticancer agents is predicated on the assumption that they will not undergo substitution reactions before entering the cancer cell. Attempts to improve the cytotoxic properties of PtIV pro‐drugs included the use of haloacetato axial ligands. Herein, we demonstrate that PtIV complexes with trifluoroacetato (TFA) or dichloroacetato (DCA) ligands can be unstable under biologically relevant conditions and readily undergo hydrolysis, which results in the loss of the axial TFA or DCA ligands. The half‐lives for PtIV complexes with two TFA or DCA ligands at pH 7 and 37 °C range from 6 to 800 min, which is short relative to the duration of cytotoxicity experiments that last 24–96 h. However, complexes with two monochloroacetato (MCA) or acetato axial ligands are stable under biologically relevant conditions. The loss of the axial ligands depends primarily on the electron‐withdrawing strength of the axial ligands, but also upon the nature of the equatorial ligands. We were unable to find obvious correlations between the structures of the PtIV complexes and the rates of decay of the parent compounds. The X‐ray crystal structures of the bis‐DCA and bis‐MCA PtIV derivatives of oxaliplatin did not reveal any significant structural differences that could explain the observed differences in stability.  相似文献   

2.
Due to their high kinetic inertness and consequently reduced side reactions with biomolecules, PtIV complexes are considered to define the future of anticancer platinum drugs. The aqueous stability of a series of biscarboxylato PtIV complexes was studied under physiologically relevant conditions. Unexpectedly and in contrast to the current chemical understanding, especially oxaliplatin and satraplatin complexes underwent fast hydrolysis in equatorial position (even in cell culture medium and serum). Notably, the resulting hydrolysis products strongly differ in their reduction kinetics, a crucial parameter for the activation of PtIV drugs, which also changes the anticancer potential of the compounds in cell culture. The discovery that intact PtIV complexes can hydrolyze at equatorial position contradicts the dogma on the general kinetic inertness of PtIV compounds and needs to be considered in the screening and design for novel platinum‐based anticancer drugs.  相似文献   

3.
A novel and highly efficient dual‐targeting platform was designed to ensure targeted in vivo delivery of dual‐action PtIV prodrugs. The dual targeting was established by liposomal encapsulation of PtIV complexes, thereby utilizing the enhanced permeability and retention (EPR) effect as the first stage of targeting to attain a high accumulation of the drug‐loaded liposomes in the tumor. After the release of the PtIV prodrug inside cancer cells, a second stage of targeting directed a portion of the PtIV prodrugs to the mitochondria. Upon intracellular reduction, these PtIV prodrugs released two bioactive molecules, acting both on the mitochondrial and on the nuclear DNA. Our PtIV system showed excellent activity in vitro and in vivo, characterized by a cytotoxicity in a low micromolar range and complete tumor remission, respectively. Notably, marked in vivo activity was accompanied by reduced kidney toxicity, highlighting the unique therapeutic potential of our novel dual‐targeting dual‐action platform.  相似文献   

4.
PtII complexes are commonly used to treat cancer. To reduce their side effects and improve their pharmacological properties, PtIV complexes are being developed as prodrug candidates that are activated by reduction in cancer cells. Concomitantly, RuII polypyridine complexes have gained much attention as photosensitizers for use in photodynamic therapy due to their attractive characteristics. In this article, a novel PtIV–RuII conjugate, which combines cancer activated chemotherapy with PDT, is presented. Upon entering the cancer cell, the PtIV centre is reduced to PtII and the axial ligands including the RuII complex and phenylbutyrate are released. As each component has its individual targets, the conjugate exerts a multi-target and multi-action effect with (photo-)cytotoxicity values upon irradiation up to 595 nm in the low nanomolar range in various (drug resistant) 2D monolayer cancer cells and 3D multicellular tumour spheroids.  相似文献   

5.
Although multitargeted PtIV anticancer prodrugs have shown significant activities in reducing drug resistance, the types of bioactive ligands and drugs that can be conjugated to the Pt center remain limited to O-donors. Herein, we report the synthesis of PtIV complexes bearing axial pyridines via ligand exchange reactions. Unexpectedly, the axial pyridines are quickly released after reduction, indicating their potential to be utilized as axial leaving groups. We further expand our synthetic approach to obtaining two multitargeted PtIV prodrugs containing bioactive pyridinyl ligands: a PARP inhibitor and an EGFR tyrosine kinase inhibitor; these conjugates exhibit great potential for overcoming drug resistance, and the latter conjugate inhibits the growth of Pt-resistant tumor in vivo. This research adds to the array of synthetic methods for accessing PtIV prodrugs and significantly increases the types of bioactive axial ligands that can be conjugated to a PtIV center.  相似文献   

6.
PtII complexes are commonly used to treat cancer. To reduce their side effects and improve their pharmacological properties, PtIV complexes are being developed as prodrug candidates that are activated by reduction in cancer cells. Concomitantly, RuII polypyridine complexes have gained much attention as photosensitizers for use in photodynamic therapy due to their attractive characteristics. In this article, a novel PtIV–RuII conjugate, which combines cancer activated chemotherapy with PDT, is presented. Upon entering the cancer cell, the PtIV centre is reduced to PtII and the axial ligands including the RuII complex and phenylbutyrate are released. As each component has its individual targets, the conjugate exerts a multi‐target and multi‐action effect with (photo‐)cytotoxicity values upon irradiation up to 595 nm in the low nanomolar range in various (drug resistant) 2D monolayer cancer cells and 3D multicellular tumour spheroids.  相似文献   

7.
Macrocycle engineering is a key topic in supramolecular chemistry. When synthesizing a ring, one can obtain either complex mixtures of macrocycles of different sizes or a single ring if a template is utilized. Here, we unite these approaches along with post-synthetic modifications to transform a single tether into multiple rings—up to five per tether. The macrocycles contain two bridged phenylpyridine ligands that are connected through a Pt atom, which defines the rings’ shape, size, and host activity. All rings undergo redox reactions (between PtII and PtIV) that allow for large conformational changes. Their reactivity, together with their host performance, is a convenient way to control the capture and release of guests, to mediate ring transformations, and to control pseudorotaxane-to-pseudorotaxane conversions. This novel approach could serve to assemble other libraries of small ring molecules, create cyclic polymers bridged by responsive-at-metal nodes, and produce processable mechanically interlocked molecules.  相似文献   

8.
Recently, PtIV prodrugs have attracted much attention as the next generation of platinum‐based antineoplastic drug candidates. Here we report the discovery and evaluation of monochalcoplatin, a monocarboxylated PtIV prodrug that is among the most cytotoxic PtIV prodrugs to date. Compared with its dicarboxylated counterpart chalcoplatin, monochalcoplatin accumulates astonishingly effectively and rapidly in cancer cells, which is not ascribed to its lipophilicity. The prodrug is quickly reduced, causes DNA damage, and induces apoptosis, resulting in superior cytotoxicity with IC50 values in the nanomolar range in both cisplatin‐sensitive and ‐resistant cells; these IC50 values are up to 422‐fold higher than that of cisplatin. A detailed mechanistic study reveals that monochalcoplatin actively enters cells through a transporter‐mediated process. Moreover, monochalcoplatin shows significant antitumor activity in an in vivo colorectal tumor model. Our study implies a practical strategy for the design of more effective PtIV prodrugs to conquer drug resistance by tuning both cellular uptake pathways and activation processes.  相似文献   

9.
Recently, PtIV prodrugs have attracted much attention as the next generation of platinum‐based antineoplastic drug candidates. Here we report the discovery and evaluation of monochalcoplatin, a monocarboxylated PtIV prodrug that is among the most cytotoxic PtIV prodrugs to date. Compared with its dicarboxylated counterpart chalcoplatin, monochalcoplatin accumulates astonishingly effectively and rapidly in cancer cells, which is not ascribed to its lipophilicity. The prodrug is quickly reduced, causes DNA damage, and induces apoptosis, resulting in superior cytotoxicity with IC50 values in the nanomolar range in both cisplatin‐sensitive and ‐resistant cells; these IC50 values are up to 422‐fold higher than that of cisplatin. A detailed mechanistic study reveals that monochalcoplatin actively enters cells through a transporter‐mediated process. Moreover, monochalcoplatin shows significant antitumor activity in an in vivo colorectal tumor model. Our study implies a practical strategy for the design of more effective PtIV prodrugs to conquer drug resistance by tuning both cellular uptake pathways and activation processes.  相似文献   

10.
In an effort to increase the stability and control the platinum reactivity of platinum–texaphyrin conjugates, two PtIV conjugates were designed, synthesized, and studied for their ability to form DNA adducts. They were also tested for their anti‐proliferative effects using wild‐type and platinum‐resistant human ovarian cancer cell lines (A2780 and 2780CP, respectively). In comparison to an analogous first‐generation PtII chimera, one of the new conjugates provided increased stability in aqueous environments. Using a combination of 1H NMR spectroscopy and FAAS (flameless atomic‐absorption spectrometry), it was found that the PtIV center within this conjugate undergoes photoinduced reduction to PtII upon exposure to glass‐filtered daylight, resulting in an entity that binds DNA in a controlled manner. Under conditions in which the PtIV complex is reduced to the corresponding PtII species, these new conjugates demonstrated potent anti‐proliferative activity in both test ovarian cancer cell lines.  相似文献   

11.
Primary photophysical and photochemical processes were studied for PtIVBr6 2– and PtIVCl6 2– complexes in water and methanol by ultrafast kinetic spectroscopy upon excitation in the band region of charge transfer from the ligand-centered group π-orbitals to the eg*-orbital of PtIV complex anion (LMCT bands). The data obtained earlier upon excitation in the region of d—d bands were compared. Irrespective of the excitation wavelength, the photochemical properties of complexes are caused by the reactions of intermediates proceeding in the picosecond time range. These intermediates were identified as PtIVBr5 upon photolysis of PtIVBr6 2– and, presumably, the Adamson radical pair [PtIIICl5 2–(C 4v )...Cl?] upon photolysis of PtIVCl6 2–. The difference in the exciting light wavelengths has an impact only on the first step of these processes, i.e., transition from the Franck—Condon excited state to intermediates.  相似文献   

12.
Square-planar NiII complexes are interesting as cheaper and more sustainable alternatives to PtII luminophores widely used in lighting and photocatalysis. We investigated the excited-state behavior of two NiII complexes, which are isostructural with two luminescent PtII complexes. The initially excited singlet metal-to-ligand charge transfer (1MLCT) excited states in the NiII complexes decay to metal-centered (3MC) excited states within less than 1 picosecond, followed by non-radiative relaxation of the 3MC states to the electronic ground state within 9–21 ps. This contrasts with the population of an emissive triplet ligand-centered (3LC) excited state upon excitation of the PtII analogues. Structural distortions of the NiII complexes are responsible for this discrepant behavior and lead to dark 3MC states far lower in energy than the luminescent 3LC states of PtII compounds. Our findings suggest that if these structural distortions could be restricted by more rigid coordination environments and stronger ligand fields, the excited-state relaxation in four-coordinate NiII complexes could be decelerated such that luminescent 3LC or 3MLCT excited states become accessible. These insights are relevant to make NiII fit for photophysical and photochemical applications that relied on PtII until now.  相似文献   

13.
Water‐soluble platinum(IV) prodrugs, which proved kinetically stable to reduction in the presence of physiological concentration of ascorbate, were quickly reduced to their active form, oxaliplatin, when co‐incubated with a macrocycle metallotexaphyrin (i.e., Motexafin Gadolinium (MGd)). The reduction of PtIV to PtII promoted by MGd occurs in cell culture as well, leading to an increase in the antiproliferative activity of the PtIV species in question. The mediated effect is proportional to the concentration of MGd and gives rise to an enhancement when the prodrug is relatively hydrophilic. MGd is known to localize/accumulate preferentially in tumor tissues. Thus, the present “activation by reduction” approach may allow for the cancer‐selective enhancement in the cytotoxicity of PtIV prodrugs.  相似文献   

14.
Platinum anticancer drugs are particularly in need of controlled drug delivery because of their severe side effects. Platinum(IV) agents are designed as prodrugs to reduce the side effects of platinum(II) drugs; however, premature reduction could limit the effect as a prodrug. In this work, a highly biocompatible, pH and redox dual‐responsive delivery system is prepared by using hybrid nanoparticles of human serum albumin (HSA) and calcium phosphate (CaP) for the PtIV prodrug of cisplatin. This conjugate is very stable under extracellular conditions, so that it protects the platinum(IV) prodrug in HSA. Upon reaching the acidic and hypoxic environment, the platinum drug is released in its active form and is able to bind to the target DNA. The Pt–HSA/CaP hybrid inhibits the proliferation of various cancer cells more efficiently than cisplatin. Different cell cycle arrests suggest different cellular responses of the PtIV prodrug in the CaP nanocarrier. Interestingly, this delivery system demonstrates enhanced cytotoxicity to tumor cells, but not to normal cells.  相似文献   

15.
Fluorescence microscopy has emerged as an attractive technique to probe the intracellular processing of Pt‐based anticancer compounds. Herein, we reported the first through‐bond energy transfer (TBET) fluorescent probe NPR1 designed for sensitive detection and quantitation of PtII complexes. The novel TBET probe was successfully applied for ratiometric fluorescence imaging of anticancer PtII complexes such as cisplatin and JM118 in cells. Capitalizing on the ability of the probe to discriminate between PtII complexes and their PtIV derivatives, the probe was further applied to study the activation of PtIV prodrug complexes that are known to release active PtII species after intracellular reduction.  相似文献   

16.
Matsumoto  K. 《Russian Chemical Bulletin》2003,52(12):2577-2587
Amidate-bridged dinuclear PtIII complexes having a PtIII—PtIII bond react with ketones and alkenes. In the reaction with alkenes in water, 1,2-diols are obtained. In the reactions with conjugated dienes, stereospecific 1,4-diols are formed selectively. A kinetic study revealed that at each intermediate step of the reaction with alkenes the electronic state of the Pt—Pt bond changes between PtIII—PtIII and PtII—PtIV and stabilizes the reaction intermediates.  相似文献   

17.
The PtIV prodrug strategy has emerged as an excellent alternative to tackle the problems associated with conventional PtII drug therapy. However, there is a lack of tools to study how this new class of PtIV drugs are processed at the cellular level. Herein, we report the first ratiometric probe for cisplatin detection and use it to investigate PtIV anticancer complexes in biological systems. The probe was able to distinguish between cisplatin and its PtIV derivatives, allowing us to probe the intracellular reduction of PtIV prodrug complexes. The correlation between the amount of active PtII species available after intracellular reduction of PtIV complexes and their cytotoxicity and the role glutathione plays in the reduction of PtIV complexes were investigated.  相似文献   

18.
The 195Pt-nmr spectra of several PtIV- and PtII-complexes have been measured in aqueous solutions. It has been shown that this method has great potentialities for the evaluation of the bonding character in platinum complexes. The 195Pt-resonance spectra of solutions containing mixed chloro-bromo-complexes of PtIV have been used for the estimation of relative stabilities of these complexes. It is pointed out that this method is generally applicable to determine equilibrium constants of platinum compounds.  相似文献   

19.
We review the results obtained for PtIVCl62−, PtIVBr62−, IrIVCl62−, IrIVBr62−, and OsIVBr62− complexes in aqueous and alcoholic solutions using ultrafast pump–probe spectroscopy, laser flash photolysis, ESR, and photoelectron spectroscopy. We discuss the correlations between the photophysics and the photochemistry of these complexes. The key reaction for PtIVCl62− is the inner-sphere electron transfer, which results in an Adamson radical pair that lives for several picoseconds, and the subsequent photoaquation in aqueous solutions and photoreduction in alcohols. The chlorine atom formed as the primary product escapes the solvent cage in aqueous solutions or oxidizes a solvent alcohol molecule via secondary electron transfer, producing secondary intermediates that react on the microsecond time scale. The photoexcitation of PtIVBr62− results in the formation of pentacoordinated PtIV intermediates, i.e. 3PtIVBr5 and 1PtIVBr5, with characteristic lifetimes of approximately 1 and 10 ps, respectively. Subsequent reactions of these intermediates result in the complexation of a solvent molecule. Photoreduction is also possible in alcohols. Similar reactions occur with rather low quantum yields for IrIVCl62−, therefore, only the ground-state recovery could be monitored in ultrafast experiments, which occur on the 10-ps time scale. The photochemical behaviours of the IrIVBr62− and OsIVBr62− complexes are similar to those of IrIVCl62− and PtIVBr62−, respectively.  相似文献   

20.
Noble-metal nanocrystals with anisotropic shapes have received increasing interest owing to their unique properties. Here, a facile route to the preparation of Pt nanobars with aspect ratios tunable up to 2.1 was reported by simply reducing a PtIV precursor in N,N-dimethylformamide (DMF) at 160 °C in the presence of poly(vinyl pyrrolidone) (PVP). In addition to its commonly observed roles as a solvent and a reductant, DMF could also decompose to generate CO, a capping agent capable of selectively passivating Pt{100} facets to promote the formation of nanobars. The size and aspect ratio of the nanobars could be tuned by varying the amount of PtIV precursor involved in the synthesis, as well as the concentration of PVP because of its dual roles as a stabilizer and a co-reductant. Our mechanistic study indicated that the anisotropic growth resulted from both particle coalescence and localized oxidative etching followed by preferential growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号