首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
The solid state formation of lithium manganese oxides has been studied from the thermal decomposition of mixtures Li2CO3–Mn3O4 with XLi (lithium cationic fraction)=0.33 (LiMn2O4), 0.50 (LiMnO2) and 0.66 (Li2MnO3). The analysis of the reactivity has been performed mainly by thermoanalytical (TG/DSC) and diffractometric (XRPD) techniques either on physical mixtures and on mixtures subjected to mechanical activation by high energy milling. At XLi=0.33, the cubic lithium manganese spinel oxide (LiMn2O4) forms in air. TG measurements showed that the reaction starts at a considerably lower temperature in the activated mixture. By variable temperature X-ray diffraction it has been assessed that, upon mechanical activation, LiMn2O4 forms directly and its formation is completed within 700 °C whereas, starting from a physical mixture, the formation goes through Mn2O3 and is complete only at 800 °C. At T>820 °C LiMn2O4 reversibly decomposes to LiMnO2 and Mn3O4 with an enthalpy of 30.05 kJ mol−1 of LiMn2O4. At XLi=0.50, by annealing under nitrogen flow for 6 h at 650 °C the activated mixture, the orthorhombic LiMnO2 is formed. Such a formation goes through a mixture of LiMnO2 and LiMn2O4. The enthalpy of LiMnO2 solid state formation from the activated mixture has been determined to be 57.4 kJ mol−1 of LiMnO2. At XLi=0.66 in air the mechanical activation considerably lowers the temperature within the monoclinic phase Li2MnO3 forms. Besides the reaction enthalpy could be determined as 40.13 kJ mol−1 of Li2MnO3. The reaction, when performed under nitrogen flow, goes through the formation of LiMnO2. Such a first stage of the reaction is affected by the temperature of reaction rather than by mechanical activation. The activation greatly enhances the second stage of the reaction leading from LiMnO2 to Li2MnO3.  相似文献   

2.
Irena Szczygiel   《Thermochimica Acta》2001,370(1-2):125-128
The phase diagram of the system CePO4–K3PO4 has been determined based on investigations by differential thermal analysis, X-ray powder diffraction, IR spectroscopy and optical microscopy. The system contains only one intermediate compound K3Ce(PO4)2, which melts incongruently at (1500±20)°C. This compound is stable down to room temperature and exhibits a polymorphic transition at 1180°C. It was confirmed that the low-temperature form β-K3Ce(PO4)2 crystallizes in a monoclinic system, space group P21/m with unit cell parameters a=9.579 (5), b=5.634 (6), c=7.468 (5) Å; =γ=90°, β=90.81 (3)°; V=403.083 Å3.  相似文献   

3.
The reaction between SiCl4 and O2 at 1 atm between 25 and 1200°C has been followed by mass spectrometry. Below 600°C no reaction with O2 is noted. Above 600°C the reaction proceeds in two steps. Between 800 and 1000°C the 28Si/32O2 peak height ratio is constant with no evolution of Cl2. It is suggested that silicon oxychlorides are being formed in this temperature regime. Above 1000°C the reaction between SiCl4 and O2 intensifies with concomitant production of Cl2. It is suggested that above 1000°C the reaction SiCl4 + O2 → SiO2 + Cl2 becomes important.

At low temperatures (<800°C) adsorbed H2O and OH groups from the surface of the fused silica tube react with SiCl4 to form HCl. The importance of this reaction decreases with increasing temperature. The increased production of HCl above 1000°C is ascribed to H2O and H2 diffusing from the tube.  相似文献   


4.
The thermal decomposition of CaOsO3 by differential thermal analyses, thermogravimetry and X-ray powder diffraction has been studied. In nitrogen CaOsO3 decomposes at 880 ± 10°C into CaO, osmium metal and oxygen due to the reaction CaOsO3 → CaO + Os + O2. In static air the decomposition occurs in three stages: 2CaOsO3 + 1/2O2 → Ca2Os2O7 (in region 775–808°C), Ca2Os2O7 → Ca2Os2O6,5 + 1/4O2 (at a temperature interval of 850–1000°C) and in the third stage Ca2Os2O6,5 → 2CaO + OsO4 ÷ 1/4 O2 (at 1005 ± 5°C). The first intermediate Ca2Os2O7 is isostructural with orthorhombic Ca2Nb2O7 and its cell parameters are: a0 = 3.745 Å, b0 = 25.1 Å, c0 = 5.492 Å, Z = 4, space group Cmcm or Cmc2. Ca2Os2O7 exhibits metallic conductivity and its electrical resistivity is 4.6 × 10−2 ohm-cm at 296K.  相似文献   

5.
The effects of doping of Co3O4with MgO (0.4–6 mol%) and V2O5 (0.20–0.75 mol%) on its surface and catalytic properties were investigated using nitrogen adsorption at −196°C and decomposition of H2O2 at 30–50°C. Pure and doped samples were prepared by thermal decomposition in air at 500–900°C, of pure basic cobalt carbonate and basic carbonate treated with different proportions of magnesium nitrate and ammonium vanadate. The results revealed that, V2O5 doping followed by precalcination at 500–900°C did not much modify the specific surface area of the treated Co3O4 solid. Treatment of Co3O4 with MgO at 500–900°C resulted in a significant increase in the specific surface area of cobaltic oxide. The catalytic activity in H2O2 decomposition, of Co3O4 was found to suffer a considerable increase by treatment with MgO. The maximum increase in the catalytic reaction rate constant (k) measured at 40°C on Co3O4 due to doping with 3 mol% MgO attained 218, 590 and 275% for the catalysts precalcined at 500, 700 and 900°C, respectively. V2O5-doping of Co3O4 brought about a significant progressive decrease in its catalytic activity. The maximum decrease in the reaction rate constant measured at 40°C over the 0.75 mol% V2O5-doped Co3O4 solid attained 68 and 93% for the catalyst samples precalcined at 500 and 900°C, respectively. The doping process did not modify the activation energy of the catalyzed reaction but much modified the concentration of catalytically active constituents without changing their energetic nature. MgO-doping increased the concentration of CO3+–CO2+ ion pairs and created Mg2+–CO3+ ion pairs increasing thus the number of active constituents involved in the catalytic decomposition of H2O2. V2O5-doping exerted an opposite effect via decreasing the number of CO3+–CO2+ ion pairs besides the possible formation of cobalt vanadate.  相似文献   

6.
A composite of oxygen ion conducting oxide Ce0.8Sm0.2O2−δ (60 vol.%) and electron conducting oxide La0.8Sr0.2CrO3−δ was prepared by sintering a powder compact at a temperature of 1550 °C. No significant reaction between the two constituent oxides was observed under preparation and oxygen permeation conditions. Appreciable oxygen permeation fluxes through the composite membrane were measured at elevated temperatures with one side of it exposed to the ambient air and the other side to a flowing helium gas stream. The oxygen flux initially increased with time, and took a long time to reach a steady value. A steady oxygen permeation flux as high as 1.4 × 10−7 mol cm−2 s−1 was obtained with a 0.3 mm thick membrane at 950 °C under a relatively small oxygen partial pressure difference of 0.21 bar/0.0092 bar. It was revealed that the overall oxygen permeation process was mainly limited by the transport in the bulk of the membrane in the range of the membrane thickness greater than 1.0 mm, and the limitation by the surface oxygen exchange came into play at reduced thickness of 0.6 mm.  相似文献   

7.
Offwhite pure Fe_2P_2O_7 was synthesized through solid phase reaction using Fe_2O_3 and NH_4H_2PO_4 in argon atmosphere.The reaction products of Fe_2O_3 and NH4_H_2PO_4 at a series of temperatures from 400 to 900℃were characterized by XRD.Comparison and analysis of XRD patterns of resultant products indicated well-crystallized Fe_2P_2O_7 could be obtained over 630℃and Fe_2P_2O_7 prepared at 700℃was triclinic in cell type.Comparison of the cell parameters proved that the as-prepared Fe_2P_2O_7 belonged toβ- Fe_2P_2O_7 in crystal phase and SEM showed its size distribution was 0.5-2μm.  相似文献   

8.
Zwitterionic titanoxanes {Cp[η5-C5H4B(C6F5)3]Ti}2O (I) and {(η5-iPrC5H4)[η5-1,3-iPrC5H3B(C6F5)3]Ti}2O (II), which contain two positively charged Ti(IV) centres in the molecule, are able to catalyse the ring-opening polymerization of -caprolactone (-CL) in toluene solution and in bulk. The process proceeds with a noticeable rate even at room temperature and accelerates strongly on raising the temperature to 60 °C. The best results have been obtained on carrying out the reaction in bulk. Under these conditions, the use of I as a catalyst (-CL:I = 1000:1) gives at 60 °C close to quantitative yield of poly--CL with the molecular mass of 197 000. An increase in the -CL:I ratio to 6000:1 increases the molecular mass of poly--CL to 530 000. Tetrahydrofuran (THF) is also polymerized under the action of I albeit with a lesser rate. However, the molecular mass of the resulting poly-THF can reach rather big values under optimal conditions (up to 217 000 at 20 °C and the THF:I ratio of 770:1). A rise in the reaction temperature from 20 to 60 °C results here to a decrease in the efficiency of the process. Titanoxane II is close to I in its catalytic activity in the -CL polymerization but it is much less active in the polymerization of THF. Propylene oxide (PO), in contrast to -CL and THF, gives with I only liquid oligomers in wide temperature and PO:I molar ratio ranges (−30 to +20 °C, PO:I = 500–2000:1). γ-Butyrolactone and 1-methyl-2-pyrrolidone are not polymerized under the action of I at room temperature. The reactions found are the first examples of catalysis of the cationic ring-opening polymerization by zwitterionic metallocenes of the group IVB metals.  相似文献   

9.
W.M. Shaheen   《Thermochimica Acta》2008,470(1-2):18-26
The effects of calcination temperature and doping with K2O on solid–solid interactions and physicochemical properties of NiO/Fe2O3 system were investigated using TG, DTA and XRD techniques. The amounts of potassium, expressed as mol% K2O were 0.62, 1.23, 2.44 and 4.26. The pure and variously doped mixed solids were thermally treated at 300, 500, 750, 900 and 1000 °C. The catalytic activity was determined for each solid in H2O2 decomposition reaction at 30–50 °C. The results obtained showed that the doping process much affected the degree of crystallinity of both NiO and Fe2O3 phases detected for all solids calcined at 300 and 500 °C. Fe2O3 interacted readily with NiO at temperature starting from 700 °C producing crystalline NiFe2O4 phase. The degree of reaction propagation increased with increasing calcination temperature. The completion of this reaction required a prolonged heating at temperature >900 °C. K2O-doping stimulates the ferrite formation to an extent proportional to its amount added. The stimulation effect of potassium was evidenced by following up the change in the peak height of certain diffraction lines characteristic NiO, Fe2O3, NiFe2O4 phases located at “d” spacing 2.08, 2.69 and 2.95 Å, respectively. The change of peak height of the diffraction lines at 2.95 Å as a function of firing temperature of pure and doped mixed solids enabled the calculation of the activation energy (ΔE) of the ferrite formation. The computed ΔE values were 120, 80, 49, 36 and 25 kJ mol−1 for pure and variously doped solids, respectively. The decrease in ΔE value of NiFe2O4 formation as a function of dopant added was not only attributed to an effective increase in the mobility of reacting cations but also to the formation of potassium ferrite. The calcination temperature and doping with K2O much affected the catalytic activity of the system under investigation.  相似文献   

10.
Aerosol flame pyrolysis deposition method was applied to deposit the oxide glass electrolyte film and LiCoO2 cathode for thin film type Li-ion secondary battery. The thicknesses of as-deposited porous LiCoO2 and Li2O–B2O3–P2O5 electrolyte film were about 6 μm and 15 μm, respectively. The deposited LiCoO2 was sintered for 2 min at 700 °C to make partially densified cathode layer, and the deposited Li2O–P2O5–B2O3 glass film completely densified by the sintering at 700 °C for 1 h. After solid state sintering process the thicknesses were reduced to approximately 4 μm and 6 μm, respectively. The cathode and electrolyte layers were deposited by continuous deposition process and integrated into a layer by co-sintering. It was demonstrated that Aerosol flame deposition is one of the good candidates for the fabrication of thin film battery.  相似文献   

11.
Gaseous nitryl azide N4O2 is generated by the heterogeneous reaction of gaseous ClNO2 with freshly prepared AgN3 at −50 °C. The geometric and electronic structure of the molecule in the gas phase has been characterized by in situ photoelectron spectroscopy (PES) and quantum chemical calculations. The experimental first vertical ionization energy of N4O2 is 11.39 eV, corresponding to the ionization of an electron on the highest occupied molecular orbital (HOMO) {4a″(πnb(N4–N5–N6))}−1. An apparent vibrational spacing of 1600 ± 60 cm−1asO1N2O3) on the second band at 12.52 eV (πnb(O1–N2–O3)) further confirms the preference of energetically stable chain structure in the gas phase. To complement the experimental results, the potential-energy surface of this structurally novel transient molecule is discussed. Both calculations and spectroscopic results suggest that the molecule adopts a trans-planar chain structure, and a five-membered ring decomposition pathway is more favorable.  相似文献   

12.
The role of Na2O- and Li2O-doping on the thermal decomposition of Co3O4 to CoO and the re-oxidation of cobaltous to cobaltic oxide has been investigated using DTA, with controlled rates of heating and cooling, IR and X-ray diffraction spectrometry techniques.

The DTA investigation revealed that both Li2O and Na2O increased the thermal stability of Co3O4. However, the effect was much more pronounced in the case of lithium oxide. Doping Co3O4 with 1.5 mole% Li2O was found to prevent any thermal decomposition of cobaltic oxide even by heating at 1100°C. The maximum thermal stabilization effect induced by doping with sodium oxide (4.5 mole%) was 30%. The sodium oxide- and lithium oxide-doping enhanced the reactivity of the produced CoO towards the re-oxidation by O2 yielding Co3O4.

The X-ray diffraction and IR spectrometric investigations showed that part of Li2O and Na2O was effectively incorporated in the Co3O4 lattice, affecting the thermal stabilization of the solid, and another part of the dopant oxide interacted with the produced CoO and also with Co3O4 giving a new sodium cobalt compound, and with Co3O4 producing, also, a new lithium cobalt oxide phase. However, the amount of Li2O dissolved in the Co3O4 lattice was greater than that of Na2O. The sudden cooling of doped solids, from 1000°C to room temperature, favoured the formation of the new sodium cobalt oxide compound, and exerted no effect on the production of the new lithium cobalt oxide phase. The characteristic d spacings and IR absorption bands of these new compounds have been determined.

The possible mechanisms of dissolution of Li2O and Na2O in cobaltic oxide lattice are discussed.  相似文献   


13.
CrOx/La2O3 mixed oxides, prepared by impregnating La2O3 with appropriate aqueous solutions of (NH4)2CrO4 and calcining at 600 °C for 4 h, have been investigated by means of XRD, TPR, XPS, DRIFTS, and Raman spectroscopy (RS). The formation of the compounds La2CrO6, La(OH)CrO4 and LaCrO4 under these conditions was evidenced. Strong peaks at 864, 884, 913, and 921 cm−1, as well as weak peaks at 136, 180, 354, 370, and 388 cm−1 in the RS spectrum of CrOx/La2O3 have been assigned to La2CrO6.  相似文献   

14.
The temperature dependence of the rate constants, for the reactions of hydrated electrons with H atoms, OH radicals and H2O2 has been determined. The reaction with H atoms, studied in the temperature range 20–250°C gives k(20°C) = 2.4 × 1010M-1s1 and the activation energy EA = 14.0 kJ mol-1 (3.3 kcal mol-1). For reaction with OH radicals the corresponding values are, k(20°C) = 3.1 × 1010M-1s-1 and EA = 14.7 kJ mol-1 (3.5 kcal mol-1) determined in the temperature range 5–175°C. For reaction with H2O2 the values are, k(20°C) = 1.2 × 1010M-1s-1 and EA = 15.6 kJ mol-1 (3.7 kcal mol-1) measured from 5–150°C. Thus, the activation energy for all three fast reactions is close to that expected for diffusion controlled reactions. As phosphates were used as buffer system, the rate constant and activation energy for the reaction of hydrated electron with H2PO4- was determined to k(20°C) = 1.5 × 107M-1s-1 and EA = 7.4 kJ mol-1 (1.8 kcal mol-1) in the temperature range 20–200°C.  相似文献   

15.
The reaction between RMgCl (two equivalents) and 1,2-W2Cl2(NMe2)4 in hydrocarbon solvents affords the compounds W2R2(NMe2)4, where R = allyl and 1− and 2-methyl-allyl. In the solid state the molecular structure of W2(C3H5)2(NMe2)4 has C2 symmetry with bridging allyl ligands and terminal W---NMe2 ligands. The W---W distance 2.480(1) Å and the C---C distances, 1.47(1) Å, imply an extensive mixing of the allyl π-MOs with the WW π-MOs, and this is supported by an MO calculation on the molecule W2(C3H5)2(NH2)4 employing the method of Fenske and Hall. The most notable interaction is the ability of the (WW)6+ centre to donate to the allyl π*-MO (π3). This interaction is largely responsible for the long W---W distance, as well as the long C---C distances, in the allyl ligand. The structure of the 2-methyl-allyl derivative W2(C4H7)2(NMe2)4 in the solid state reveals a gauche-W2C2N4 core with W---W = 2.286(1) Å and W---C = 2.18(1) Å, typical of WW and W---C triple and single bonds, respectively. In solution (toluene-d8) 1H and 13C NMR spectra over a temperature range −80°C to +60°C indicate that both anti- and gauche- W2C2N4 rotamers are present for the 2-methyl-allyl derivative. In addition, there is a facile fluxional process that equilibrates both ends of the 2-methyl-allyl ligand on the NMR time-scale. This process leads to a coalescence at 100°C and is believed to take place via an η3-bound intermediate. The 1-methyl-allyl derivative also binds in an η1 fashion in solution and temperature-dependent rotations about the W---N, W---C and C=C bonds are frozen out at low temperatures. The spectra of the allyl compound W2(C3H5)2(NMe2)4 revealed the presence of two isomers in solution—one of which can be readily reconciled with the presence of the bridging isomer found in the solid state while the other is proposed to be W23-C3H5)2(NMe2)4. The compound W2R2(NMe2)4 where R = 2,4-dimethyl- pentadiene was similarly prepared and displayed dynamic NMR behaviour explainable in terms of facile η1 = η3 interconversions.  相似文献   

16.
Catecholborane is prepared in benzene by passing B2H6, generated from I2/NaBH4, through a suspension of catechol at 25°C. The reagent prepared in this way is used for hydroboration-oxidation of representative alkenes and alkynes at 80°C. Hydroboration of 1-alkynes followed by iodination with I2/NaOH gives the corresponding trans-1-alkenyl iodides in 70–72% yield. The alkenyl catecholboranes can be prepared at 25°C by performing the reaction in the presence of 10 mole% of H3B:N(C2H5)2Ph or H3B:THF. The reaction is believed to go through hydroboration of the alkynes by borane followed by exchange with catecholborane. Studies of the preparation of dialkylphenoxyboranes and alkenyldiphenoxyboranes through hydroboration of 1-decene and 1-decyne by use of H3B:N(C2H5)2Ph and phenol are also reported.  相似文献   

17.
Microdifferential thermal analysis (μ-DTA), X-ray diffraction (XRD) and infrared (IR) spectroscopy were used for the first time to investigate the liquidus and solidus relations in the KPO3–Y(PO3)3 system. The only compound observed within the system was KY(PO3)4 melting incongruently at 1033 K. An eutectic appears at 13.5 mol% Y(PO3)3 at 935 K, the peritectic occurs at 1033 K and the phase transition for potassium polyphosphate KPO3 was observed at 725 K. Three monoclinic allotropic phases of the single crystals were obtained. KY(PO3)4 polyphosphate has the P21 space group with lattice parameters: a=7.183(4) Å, b=8.351(6) Å, c=7.983(3) Å, β=91.75(3)° and Z=2 is isostructural with KNd(PO3)4. The second allotropic form of KY(PO3)4 belongs to the P21/n space group with lattice parameters: a=10.835(3) Å, b=9.003(2) Å, c=10.314(1) Å, β=106.09(7)° and Z=4 and is isostructural with TlNd(PO3)4. The IR absorption spectra of the two forms show a chain polyphosphates structure. The last modification of KYP4O12 crystallizes in the C2/c space group with lattice parameters: a=7.825(3) Å, b=12.537(4) Å, c=10.584(2) Å, β=110.22(7)° and Z=4 is isostructural with RbNdP4O12 and contains cyclic anions. The methods of chemical preparations, the determination of crystallographic data and IR spectra for these compounds are reported.  相似文献   

18.
The reaction of Ru(CO)4(C2H4) or Ru(CO)5 with 1,5-Ph4P2N4S2 in CH2Cl2/hexane at 23°C produces the dimer [Ru(CO)2(Ph4 P2N4S2)]2 (2), which was shown by X-ray crystallography to have a centrosymmetric structure in which the P2N4S2 ring is attached to one ruthenium atom through two (geminal) nitrogen atoms and the remote sulfur atom and serves as a bridge to the other ruthenium atom via the second sulfur atom. Crystals of 2 ·2(CH2Cl2) are triclinic, space group P (No. 2), a = 12.901(1) Å, b = 13.072(1) Å, c = 10.123(1) Å, = 100.88(1)°, β = 98.90(1)°, γ = 67.50(1)°, V = 1542.4(3) Å, Z = 1 with final R and Rw values of 0.040 and 0.027, respectively.  相似文献   

19.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

20.
Irradiation of the 30-electron Mo25-C5Me5)2(CO)4 and Re2(CO)10 in toluene solution (containing H2O) afforded (in 1–2% yields) a novel triangular metal cluster, (η5-C5Me5)3Mo3(CO)42-H)(η3-O) (1), which was characterized by a single-crystal X-ray diffraction study. Compound 1, of pseudo Cs-m symmetry, has a triangulo-Mo33-O) core with composite Mo---H---Mo and Mo---Mo electron-pair bonds along one unusually short edge (2.660(1) Å) and Mo--- electron-pair bonds along the other two edges (2.916(1) and 2.917(1) Å). The edge-bridged hydride ligand, which displays a characteristic high-field proton NMR resonance at δ −17.79 ppm, was not found from the crystallographic determination but was located via a quantitative potential-energy-minimization method. This procedure unambiguously established that the optimized hydrogen position, which corresponds to a distinct coordination site with identical Mo---H distances of 1.85 Å, is the only one that can be sterically occupied by a metal-bound hydride ligand. This 46-electron species is the first electron-deficient trimolybdenum cluster containing a monoprotonated Mo---Mo double bond; its existence is attributed to ligand overcrowding due to the bulky pentamethylcyclopentadienyl rings. Black (η5- C5Me5)3Mo3(CO)42-H)(η3-O) · 1/2THF crystallizes with two formula species in a triclinic unit cell of P1 symmetry with a 8.603(4), b 11.115(4), c 19.412(11) Å, 80.69(4)°, β 101.10(4)°, and γ 98.88(3)° at −40° C. Least-squares refinement (RAELS with 221 variables) of one independent Mo3 molecule and a centrosymmetrically-disordered THF molecule converged at R1(F) 5.62%, R2(F 6.88% for 8460 independent diffractometry data (I0 ρ 3σ(I0 collected at −40° C with Mo-K radiation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号