首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang SL  Fan XF  Xu ZR  Fang ZL 《Electrophoresis》2005,26(19):3602-3608
A miniaturized CE system has been developed for fast DNA separations with sensitive fluorimetric detection using a rectangle type light-emitting diode (LED). High sensitivity was achieved by combining liquid-core waveguide (LCW) and lock-in amplification techniques. A Teflon AF-coated silica capillary on a compact 6x3 cm baseplate served as both the separation channel for CE separation and as an LCW for light transmission of fluorescence emission to the detector. An electronically modulated LED illuminated transversely through a 0.2 mm aperture, the detection point on the LCW capillary without focusing, and fluorescence light was transmitted to the capillary outlet. To simplify the optics and enhance collection of light from the capillary outlet, an outlet reservoir was designed, with a light transmission window, positioned directly in front of a photomultiplier tube (PMT), separated only by a high pass filter. Automated sample introduction was achieved using a sequential injection system through a split-flow interface that allowed effective release of gas bubbles. In the separation of a phiX174 HaeIII DNA digest sample, using ethidium bromide as labeling dye, all 11 fragments of the sample were effectively resolved in 400 s, with an S/N ratio comparable to that of a CE system with more sophisticated LIF.  相似文献   

2.
A fluorescence detection system for capillary liquid separation methods is described. The system is based on a silica capillary coated with a low refractive index fluoropolymer Teflon AF that serves both as a separation channel and as a liquid core waveguide (LCW). A fibre-coupled laser excites separated analytes in a detection point and arising fluorescence is collected at one end of the LCW capillary into the other optical fibre which brings it to a compact charge-coupled device (CCD) array spectrometer installed in a desktop computer. No additional components such as focusing optics or filters are necessary. This system was used for detecting isoelectrically focused fluorescent low-molecular-mass pI (isoelectric point) markers and fluorescein isothiocyanate (FITC) labelled proteins. The ability of the system to acquire fluorescent spectra is also demonstrated.  相似文献   

3.
A high‐speed separation method of capillary MEKC with LIF detection had been developed for separation and determination of amino acids in laver. The CE system comprised a manual slotted‐vial array (SVA) for sample introduction that could improve the separation efficiency by reducing injection volume. Using a capillary with 80 mm effective separation length, the separation conditions for amino acids were optimized. Applied with the separation electric field strength of 300 V/cm, the ten amino acids could be completely separated within 2.5 min with 10 mol/L Na2HPO4–NaOH buffer (pH = 11.5) including 30 mmol/L SDS. Theoretical plates for amino acids ranged from 72 000 to 40 000 (corresponding to 1.1–2.0 μm plate heights) and the detection limits were between 25 and 80 nmol/L. Finally, this method was applied to analyze the composition of amino acids in laver and eight known amino acids could be found in the sample. The contents of five amino acids, tyrosine, glutamic acid, glycine, lysine, and aspartic acid that could be completely separated in real sample were determined. The recoveries ranged from 82.3% to 123% that indicated the good reliability for this method in laver sample analysis.  相似文献   

4.
Cheng YQ  Yao B  Zhang HD  Fang J  Fang Q 《Electrophoresis》2010,31(19):3184-3191
A high-speed DNA fragment separation system was developed based on a short capillary and a slotted-vial array automated sample introduction system. The injection process of DNA sample in a short capillary was investigated systematically with three injection techniques including constant-field-strength, low-field-strength and translational spontaneous injections. Under the optimized conditions, picoliter-scale sample plugs (corresponding to ca. 20-μm plug length) were obtained, which ensure the high-speed and high-efficiency separation for DNA fragments with a short effective separation length. Other separation conditions including the sieving matrix concentration, separation field strength and effective separation length were also optimized. The present system was applied in the separation of ΦX174-Hae III digest DNA marker. With an effective separation length of 2.5 cm, the separation could be achieved in <100 s with plate heights ranging from 0.21 to 0.74 μm (corresponding to plate numbers from 4.86 × 10(6) to 1.36 × 10(6)/m). The repeatabilities for the migration time of the eleven fragments were between 0.4 and 1.1% RSD (n=8). By using the automated continuous injection method, the separation for four different DNA samples could be achieved within 250 s. The present system was further applied in the fast sizing of real DNA samples of PCR products.  相似文献   

5.
Shihabi ZK 《Electrophoresis》2002,23(15):2394-2398
The work presented here demonstrates that electroinjection can be performed using discontinuous buffers, which can result in better stacking than that obtained by hydrodynamic injection. The sample can be concentrated at the tip of the capillary leaving practically the whole capillary for sample separation. This results in several advantages, such as better sample concentration, higher plate number and shorter time of stacking. However, sample introduction by electromigration is suited for samples free or low in salt content. Samples, which are high in salt content, are better introduced by the hydrodynamic injection for stacking by the discontinuous buffers. Different simple methods to introduce the discontinuity in the buffer for electroinjection are discussed.  相似文献   

6.
A high‐speed CE system for multiple samples was developed based on a short capillary and an automated sample introduction device consisting of a commercial multi‐well plate and an x‐y‐z translation stage. The spontaneous injection method was used to achieve picoliter‐scale sample injection from different sample wells. Under the optimized conditions, a 40 μm‐long sample plug (corresponding to 78‐pL plug volume) was obtained in a 50 μm id capillary, which ensured both the high separation speed and high separation efficiency. The performance of the system was demonstrated in the separation of FITC‐labeled amino acids with LIF detection. Five FITC‐labeled amino acids including arginine, phenylalanine, glycine, glutamic acid, and asparagine were separated within 15 s with an effective separation length of 1.5 cm. The separation efficiency ranged from 7.96 × 105/m to 1.12 × 106 /m (corresponding to 1.26–0.89 μm plate heights). The repeatability of the peak heights calibrated with an inner standard for different sample wells was 2.4 and 2.7% (n = 20) for arginine and phenylalanine, respectively. The present system was also applied in consecutive separations of 20 different samples of FITC‐labeled amino acids with a whole separation time of less than 6 min.  相似文献   

7.
A versatile, simple, liquid core waveguide (LCW)-based fluorescence detector design is described for capillary systems. A Teflon AF coated fused silica capillary serves as the LCW. The LCW is transversely excited. The light source can be a conventional or high power (HP) light emitting diode (LED) or a laser diode (LD). The source can be coupled to the LCW directly or via an optical fiber. Fiber coupling is convenient if a high power (necessarily heat sink mounted) emitter is used. The LCW is concentrically placed within a slightly larger opaque jacket tube and the LCW terminates just short of the jacket terminus, which is sealed with an optical window. The influent liquid thus exits the LCW tip, flows back around the LCW through the jacket annulus to exit via an aperture on the jacket tube. The problem of coupling the emitted light efficiently to the photodetector is thus solved by placing the tip of the annular tubular assembly directly on the detector.For excitation wavelengths of 365 nm (LED/HPLED) and 405 nm (LD), the tris(8-hydroxyquinoline-5-sulfonic acid (sulfoxine)) chelate of aluminum (λem,max ∼ 500 nm) and Coumarin 30 were respectively used as the model analyte. For source-detector combinations comprising (a) a UV LED (∼1.5 mW @ 15 mA) and a photodiode, (b) a LD (∼5 mW, abstracted from a “Blu-Ray” recorder) and a miniature photomultiplier tube (mPMT), and (c) a high power (210 mW @ 500 mA) surface-mount HPLED-mPMT, the S/N = 3 LODs were, respectively, 1.7 pmol Al, 3-100 fmol Coumarin 30 (depending on laser intensity and integration time), and 4 fmol Al. In the last case, the relative standard derivation (R.S.D.) at the 20 fmol level was 1.5% (n = 10).  相似文献   

8.
Cheng Y  Chen H  Li Y  Chen X  Hu Z 《Talanta》2004,63(2):491-496
A novel, rapid and accurate method for the separation and determination of aloperine (ALP), sophoridine (SRI), matrine (MT) and oxymatrine (OMT) has been developed by combination of flow injection (FI) with microfluidic capillary electrophoresis (CE) for the first time. In the present paper, a continuous sample introduction interface was described. The interface with an H-channel structure was produced using a non-lithographic approach. The H-channel structure was fixed on a planar plastic base utilizing a horizontal 6.5 cm-long separation capillary with two vertical sidearm tubes on each end that served as inlet and outlet flow-through electrode reservoirs. The inlet reservoir also functioned as interface for coupling to the FI system. The buffer solution used was a 50 mmol l−1 borate solution with the pH adjusted to 8.80 with 2 mol l−1 HCl. The performance of the system was demonstrated in the separation and determination of ALP, SRI, MT and OMT with UV detection at 215 nm, achieving baseline separation within 2 min. A series of samples was injected repeatedly without current interruption and subsequent rinsing, and the contents of these four bio-alkaloids in two marketed drugs were determined with satisfactory recovery by this proposed method.  相似文献   

9.
Zhang T  Fang Q  Wang SL  Qin LF  Wang P  Wu ZY  Fang ZL 《Talanta》2005,68(1):19-24
The signal-to-noise level of light emitting diode (LED) fluorimetry using a liquid-core-waveguide (LCW)-based microfluidic capillary electrophoresis system was significantly enhanced using a synchronized dual wavelength modulation (SDWM) approach. A blue LED was used as excitation source and a red LED as reference source for background-noise compensation in a microfluidic capillary electrophoresis (CE) system. A Teflon AF-coated silica capillary served as both the separation channel and LCW for light transfer, and blue and red LEDs were used as excitation and reference sources, respectively, both radially illuminating the detection point of the separation channel. The two LEDs were synchronously modulated at the same frequency, but with 180°-phase shift, alternatingly driven by a same constant current source. The LCW transferred the fluorescence emission, as well as the excitation and reference lights that strayed through the optical system to a photomultiplier tube; a lock-in amplifier demodulated the combined signal, significantly reducing its noise level. To test the system, fluorescein isothiocyanate (FITC)-labeled amino acids were separated by capillary electrophoresis and detected by SDWM and single wavelength modulation, respectively. Five-fold improvement in S/N ratio was achieved by dual wavelength modulation, compared with single wavelength modulation; and over 100-fold improvement in S/N ratio was achieved compared with a similar LCW-CE system reported previously using non-modulated LED excitation. A detection limit (S/N = 3) of 10 nM FITC-labeled arginine was obtained in this work. The effects of modulation frequency on S/N level and on the rejection of noise caused by LED-driver current and detector were also studied.  相似文献   

10.
A miniaturized capillary electrophoresis (CE) system with UV-Vis detection was coupled to a flow injection (FI) system for achieving high throughput continuous sample introduction. The cassette of a commercial CE instrument was modified to hold a 6.5 cm long silica capillary and a flow-through waste reservoir. The cassette was inserted into the flow-cell chamber of a commercial UV detector, with the light beam focused on the capillary and collected by two ball lenses on the cassette. The capillary inlet, left outside the cassette and detector, was positioned on the top of a vertical 3.5 mm diameter glass rod, in close contact with an electrode. Samples injected through the FI system dropped freely on top of the pillar, covering the capillary inlet and electrode. Continuous sample introduction was achieved for CE separations under non-interrupted separation voltage, which was isolated from the FI system through the discontinuity of droplets. The newly developed interface and UV detection system was used for fast separation of sulphamethoxazole (SMZ) and trimethoprim (TMP) in sulphatrim tablets, achieving a high throughput of over 48 h−1, and a low carryover of 2%. Separation efficiencies of 8 μm plate height and detection limits of 1.0 mg l−1 for SMZ and 0.5 mg l−1 (3σ) for TMP were obtained.  相似文献   

11.
Advancement in rapid targeted chemical analysis of homemade and improvised explosive devices is critical for the identification of explosives-based hazards and threats. Gradient elution moving boundary electrophoresis (GEMBE), a robust electrokinetic separation technique, was employed for the separation and detection of common inorganic oxidizers from frequently encountered fuel-oxidizer mixtures. The GEMBE system incorporated sample and run buffer reservoirs, a short capillary (5 cm), an applied electric field, and a pressure-driven counterflow. GEMBE provided a separation format that allowed for continuous injection of sample, selectivity of analytes, and no sample cleanup or filtration prior to analysis. Nitrate, chlorate, and perchlorate oxidizers were successfully detected from low explosive propellants (e.g., black powders and black powder substitutes), pyrotechnics (e.g., flash powder), and tertiary explosive mixtures (e.g., ammonium nitrate- and potassium chlorate-based fuel-oxidizer mixtures). Separation of these mixtures exhibited detection without interference from a plethora of additional organic and inorganic fuels, enabled single particle analysis, and demonstrated semiquantitative capabilities. The bulk counterflow successfully excluded difficult components from fouling the capillary, yielding estimated limits of detection down to approximately 10 μmol/L. Finally, nitrate was separated and detected from postblast debris collected and directly analyzed from two nitrate-based charges.  相似文献   

12.
Capillary isotachophoresis with coupled columns provides efficient means for rapid electrophoretic analysis of sample volumes of up to 10 μl or more. Commercially available instruments are commonly equipped with conductivity and UV absorbance detectors; however, their on-line coupling with electrospray mass spectrometry is highly desirable. In this work we have modified the commercial coupled column isotachophoresis system for direct connection to an ion trap mass spectrometer. The design included attachment of an elution block with a short capillary transfer line directing the separated zones towards the mass spectrometer. The modification further included separation of the injection and electrode blocks from the separation columns by semipermeable membranes eliminating unwanted fluid movements in the wide bore fluoropolymer separation capillaries. Fused silica capillaries with varying internal diameter were connected as a transfer line between the elution block and mass spectrometer. The transfer line served also as the ESI tip of the sheathless electrospray interface. During the analysis the first, wide bore preseparation capillary with 0.8 mm internal diameter served for removal of the bulk sample components and preseparation of the potentially interfering analytes. After the electronic column switching the separation was finished in a 0.3 mm internal diameter capillary and the separated ITP zones were transferred in-line by a spray liquid towards the mass spectrometer. The instrumentation was tested for determination of vitamins in whole blood analysis and separation of tryptic peptides.  相似文献   

13.
A miniaturized post-column fluorimetric detection cell for capillary separation methods based on optical fibers and liquid core waveguides (LCWs) is described. The main part of the detection cell is a fused-silica capillary coated with Teflon AF serving as an LCW. The optical fibers are used both for coupling the excitation source with the detection domain in the LCW and for the axial fluorescence collection from the LCW end. The latter fiber is connected with a compact CCD spectrometer that serves for the rejection of the scattered excitation light and for the fluorescence signal detection. The proposed design offers a compact fluorescence detector for various microcolumn separation techniques without optical elements such as filters or objectives. Moreover, its construction and optical adjustment are very simple and the whole system is highly miniaturized. The function of the detection cell is demonstrated by CE of amino acids labelled by fluorescein-based tags. Separations of different standard amino acid mixtures and plasma samples are presented. The comparison of plasma amino acid levels of individuals being in good health with those of patients with inherited metabolic disorders is also shown.  相似文献   

14.
Chen G  Wang J 《The Analyst》2004,129(6):507-511
A newly designed capillary electrophoresis (CE) microchip with a simple and efficient sample introduction interface is described. The sample introduction is carried out directly on the separation channel through a sharp inlet tip placed in the sample vial, without an injection cross, complex microchannel layouts or hardware modification. Alternate placement of the inlet tip in vials containing the sample and buffer solutions permits a volume defined electrokinetic sample introduction. Such fast and simple sample introduction leads to highly reproducible signals with no observable carry over between different analyte concentrations. The performance of the system was demonstrated in flow-injection and CE measurements of nitroaromatic explosives and for on-chip enzymatic assays of glucose in the presence of ascorbic acid. Employing an 8 cm long separation channel and a separation voltage of 4000 V it offers high-throughput flow-injection assays of 100 samples h(-1) with a relative standard deviation of 3.7% for TNT (n= 100). Factors influencing the analytical performance of the new microchip have been characterized and optimized. Such ability to continuously introduce discrete samples into micrometer channels indicates great promise for high-speed microchip analysis.  相似文献   

15.
He QH  Fang Q  Du WB  Fang ZL 《Electrophoresis》2007,28(16):2912-2919
A fabrication process for producing monolithic sampling probes on glass chips, with tip diameters of a few hundred micrometers was developed, using simple tools including a glass cutter and a bench drill. Microfluidic chips with probes fabricated by this approach were coupled to a linearly moving slotted-vial array sample presentation system for performing continuous sample introduction in the chip-based CE system. On-chip horizontal tubular reservoirs containing working electrolyte and waste were used to maintain a stable hydrostatic pressure in the chip channels during prolonged working periods. The performance of the system was demonstrated in the separation of FITC-labeled amino acids with LIF detection, by continuously introducing a train of different samples without interruption. Throughputs of 30-60/h were achieved with <1.0% carry-over and reproducibilities in peak height of 3.6, 3.3, and 3.5% RSD for arginine, FITC, and phenylalanine, respectively (n = 11). Continuous analysis of a mixture of FITC-labeled amino acids for 2 h, involving 60 analytical cycles, yielded an RSD of 7.5 and 6.8% for arginine and FITC (n = 60), respectively. An extremely low sample consumption of 30 nL for each analysis was obtained. Separation efficiencies in plate numbers were in the range of 0.8-2x10(5)/m. In addition to the application in sample introduction, the sample/reagent introduction system was also used to produce working electrolyte gradients during a CE separation to improve the separation efficiency. Comparing with isocratic electrophoresis separation, gradient CE demonstrated better separation efficiencies for a mixture of FITC-labeled amino acids.  相似文献   

16.
We have developed a compact polytetrafluoroethylene (PTFE) assembly-type capillary electrophoresis with chemiluminescence (CL) detection system. Luminol-microperoxidase-hydrogen peroxide chemiluminescence reaction was adopted. The device is rectangular in shape (60 mm x 40 mm x 30 mm) and includes three reservoirs (sample, migration buffer, and detection reservoirs) with electrodes. The detection reservoir includes an optical fiber to transport light at the capillary tip to a photomultiplier tube. Isoluminol isothiocyanate (ILITC) was analyzed as a model using this device with fused-silica or polytetrafluoroethylene capillary tubes 10 cm in length. We also used the sample reservoir as a reactor for an immune reaction between anti-human serum albumin immobilized on glass beads and isoluminol isothiocyanate-labeled human serum albumin. The present polytetrafluoroethylene assembly with the capillary tube was useful as a palm-sized analysis device for separation and detection, as well as a reactor.  相似文献   

17.
The combined flow injection (FI)-capillary electrophoresis (CE) system was further exploited by coupling to an electrogenerated chemiluminescence (ECL) detection system. A low-cost miniaturized CE system was developed on a chip platform to provide easy interface both with FI sample introduction and with ECL detection. A falling-drop interface was employed to perform FI split-flow sample introduction while achieving electrical isolation from the CE high voltage. A plexiglas reservoir at the capillary outlet served as both the reaction and detection cell for the ECL reaction, with Ru(bpy)32+ reagent continuously flowing through the cell. An optical fiber was positioned within the reservoir close to the capillary outlet for transferring the ECL emission to the PMT. The relative positions of the capillary outlet, working electrode and optical fiber as well as reagent renewal flow-rate were optimized to achieve both good sensitivity and separation efficiency under non-interrupted sampling conditions, involving large numbers of samples. An on-column joint often used in other works for isolating the ECL detection system from the CE separation voltage was not found necessary. The performance of the system was illustrated by the baseline separation of proline, valine and phenylalanine with a high throughput of 50 h−1 and plate height of 14 μm for proline under 147 V cm−1 field strength. Detection limits (3σ) were 1.2, 50 and 25 μM and peak height precisions were 1.4, 5.4 and 4.3% R.S.D. (n=9) for proline, valine and phenylalanine, respectively.  相似文献   

18.
A new on-line method for the separation of vanadium (IV) and vanadium (V) as well as for the removal of ClO+ mass spectral interference on vanadium determination by quadrupole-ICP-MS has been developed. The sample introduction system consists of a modified fused silica capillary coupled to a direct injection nebuliser (DIN), between the solvent delivery system and the ICP. Fused silica capillaries were treated with different anion and cation exchanger reagents and were tested for the retention of Cl and the separation of vanadium ions at μg l−1 levels. A suitable strong anion exchanger functional group (3-aminopropyltrimethoxy silane) was selected. Chlorine anions were retained in this anionic capillary and the separation between V(IV) and V(V) was possible in the pH range 2–4. The selections of instrumental ICP-MS conditions for the minimisation of the ClO+ interference were carefully considered. Factors affecting the chromatographic separation such as sample pH, sample flow rate, effect of methanol in the mobile phase and length of the capillary for the separation were optimised. The proposed methodology provides a simple and rapid method for vanadium speciation. A relative detection limit of 12 l−1 (i.e. absolute detection limits of 120 pg) for V(IV) based on peak height measurements was obtained. The relative standard deviation for V(IV) was 2.4% for a 10 μl injection (n=6).  相似文献   

19.
Huang YZ  Du WB  Pan JZ  Fang Q 《The Analyst》2008,133(9):1237-1241
In this work, a microfluidic chip-based valveless flow injection analysis (FIA) system with gravity-driven flows and liquid-core waveguide (LCW) spectrometric detection was developed. Automated sample injection in the 0.3-6.4 nL range under gated injection mode was achieved by controlling the vertical position of the waste reservoir fixed on a moving platform and the residence time of the reservoir in each position, without the requirement of microvalves or electrokinetic manipulation. An integrated LCW spectrometric detection system was built on the chip by coupling a 20 mm-long Teflon AF 2400 capillary with the microchannel to function as a LCW flow cell, using a green LED as light source and a photodiode as detector. The performance of the system was demonstrated in the determination of [NO(2)](2-) based on the Saltzman reaction. Linear absorbance response was obtained in the range of 0.1-20 mg L(-1) (R(2) = 0.9910), and a good reproducibility of 0.34% RSD (n = 17) was achieved.  相似文献   

20.
A single step on-line concentration and separation method for peptides in non-aqueous capillary electrophoresis was developed. ACN containing 50 mM tetraethylammonium perchlorate was used as the electrophoretic medium; angiotensins I-IV were separated as a result of the differences in the magnitudes of their interactions with perchlorate anions. When the sample solution (ACN containing 0.5% trifluoroacetic acid and angiotensins) was injected as a large-volume plug, the analytes were concentrated at the inlet end of the capillary by both sweeping and stacking mechanisms; the separation procedure then started automatically without any operations such as polarity change. It was found that the concentration of analytes, injection period, and concentration of tetraethylammonium perchlorate in the electrophoretic medium were important factors for both separation and concentration efficiencies. The angiotensins were concentrated and separated with the large-volume injection of up to 80% of the effective capillary length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号