首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The UV absorbance and photochemical decomposition kinetics of hydrogen peroxide in borate/boric acid buffers were investigated as a function of pH, total peroxide concentration, and total boron concentration. At higher pH borate/boric acid inhibits the photodecomposition of hydrogen peroxide (molar absorptivity and quantum yield of H(2)O(2) and HO(2) (-), (19.0+/-0.3) M(-1) cm(-1) and 1, and (237+/-7) M(-1) cm(-1) and 0.8+/-0.1, respectively). The results are consistent with the equilibrium formation of the anions monoperoxoborate, K(BOOH)=[H(+)][HOOB(OH)(3) (-)]/([B(OH)(3)][H(2)O(2)]), 2.0 x 10(-8), R. Pizer, C. Tihal, Inorg. Chem. 1987, 26, 3639-3642, and monoperoxodiborate, K(BOOB)=[BOOB(2-)]/([B(OH)(4) (-)][HOOB(OH)(3) (-)]), 1.0+/-0.3 or 4.3+/-0.9, depending upon the conditions, with molar absorptivity, (19+/-1) M(-1) cm(-1) and (86+/-15) M(-1) cm(-1), respectively, and respective quantum yields, 1.1+/-0.1 and 0.04+/-0.04. The low quantum yield of monoperoxodiborate is discussed in terms of the slower diffusion apart of incipient (.)OB(OH)(3) (-) radicals than may be possible for (.)OH radicals, or a possible oxygen-bridged cyclic structure of the monoperoxodiborate.  相似文献   

2.
The synthesis has been effected, via the corresponding N-phenyl-ß-aminopropionic acids, of 1-(o-methoxyphenyl)-, 1-(o-ethoxyphenyl)-, and 1-(o-tolyl)dihydrouracils and also of 1-(o-methoxyphenyl)-, 1-(o-ethoxyphenyl)-, and 1-(o-tolyl)-2-thiodihydrouracils. The dihydrouracits and thiodihydrouracils obtained have been reduced with LiAlH4 to the corresponding 2-oxohexahydro-, and 2-thioxohexahydropyrimidines. By the action of bromine and the subsequent splitting out of HBr, the dihydrouracils have been converted into 1-(o-methoxyphenyl)-, 1-(o-ethoxyphenyl)-, and 1-(o-tolyl)uracils.  相似文献   

3.
(E)-4-tert-Butyl-4'-oxystilbene, 1(-), is thermally stable as the (E)-1(-) isomer but may be photoisomerized to the (Z)-1(-) isomer as shown by UV-vis and (1)H NMR studies in aqueous solution. When (E)-1(-) is complexed by alphaCD two inclusion isomers (includomers) form in which alphaCD assumes either of the two possible orientations about the axis of (E)-1(-) in alphaCD.(E)-1(-) for which (1)H NMR studies yield the parameters: k(1)(298 K)= 12.3 +/- 0.6 s(-1), DeltaH(1)(++)= 94.3 +/- 4.7 kJ mol(-1), DeltaS1(++)= 92.0 +/- 5.0 J K(-1) mol(-1), and k(2)(298 K)= 10.7 +/- 0.5 s(-1), DeltaH(2)(++)= 93.1 +/- 4.7 kJ mol(-1), DeltaS2(++)= 87.3 +/- 5.0 J K(-1) mol(-1) for the minor and major includomers, respectively. The betaCD.(E)-1(-) complex either forms a single includomer or its includomers interchange at the fast exchange limit of the (1)H NMR timescale. Complexation of 1(-) by N-(6(A)-deoxy- alpha-cyclodextrin-6(A)-yl)-N'-(6(A)-deoxy- beta-cyclodextrin-6(A)-yl)urea, results in the binary complexes 2.(E)-1(-) in which both CD component annuli are occupied by (E)-1(-) and which exists exclusively in darkness and 2.(Z)-1(-) in which only one CD component is occupied by (Z)-1(-) and exists exclusively in daylight at lambda > or = 300 nm. Irradiation of solutions of the binary complexes at 300 and 355 nm results in photostationary states dominated by 2.(E)-1(-) and 2.(Z)-1(-), respectively. In the presence of 4-methylbenzoate, 4(-), 2.(Z)-1(-) forms the ternary complex 2.(Z)-1(-).4(-) where 4(-) occupies the second CD annulus. Interconversion occurs between 2.(Z)-1(-).4(-) and 2.(E)-1(-)+4(-) under the same conditions as for the binary complexes alone. Similar interactions occur in the presence of 4-methylphenolate and 4-methylphenylsulfonate. The two isomers of each of these systems represent different states of a molecular device, as do the analogous binary complexes of N,N-bis(6(A)-deoxy- beta-cyclodextrin-6(A)-yl)urea, 3, [3.(E)-1(-) and 3.(Z)-1(-), where the latter also forms a ternary complex with 4(-).  相似文献   

4.
The four stereoisomers of chalcogran 1 ((2RS,SRS)-2-ethyl-1,6-di-oxaspiro[4.4]nonane), the principal component of the aggregation pheromone of the bark beetle pityogenes chalcographus, are prone to interconversion at the spiro center (C5). During diastereo- and enantioselective dynamic gas chromatography (DGC), epimerization of 1 gives rise to two independent interconversion peak profiles, each featuring a plateau between the peaks of the interconverting epimers. To determine the rate constants of epimerization by dynamic gas chromatography (DGC), equations to simulate the complex elution profiles were derived, using the theoretical plate model and the stochastic model of the chromatographic process. The Eyring activation parameters of the experimental interconversion profiles, between 70 and 120 C in the presence of the chiral stationary phase (CSP) Chirasil-beta-Dex, were then determined by computer-aided simulation with the aid of the new program Chrom-Win: (2R,5R)-1: deltaG(++) (298.15 K) = 108.0 +/-0.5 kJ mol(-1), deltaH(++) = 47.1+/-0.2 kJ mol(-1), deltaS(++) = -204+/-6 JK(-1) mol(-1): (2R,5S)-1: deltaG(++) (298.15 K) = 108.5+/-0.5 kJ mol(-1), deltaH(++) = 45.8+/-0.2 kJ mol(-1), deltaS(++) = -210 +/-6 J K mol(-1); (2S,5S)-1: deltaG(++) (298.15 K)= 108.1+/-0.5 kJ mol(-1), deltaH(++) = 49.3+/-0.3 kJ mol(-1), deltaS(++) = -197+/-8 J K(-1) mol(-1); (2S,5R)-1: deltaG(++) (298.15 K)=108.6+/-0.5 kJ mol(-1), deltaH(++) = 48.0+/-0.3 kJ mol(-1), deltaS(++) = -203+/-8 J K(-1) mol(-1). The thermodynamic Gibbs free energy of the E/Z equilibrium of the epimers was determined by the stopped-flow multidimensional gas chromatographic technique: deltaG(E/Z) (298.15 K)= -0.5 kJ mol(-1), deltaH(E/Z) = 1.4 kJ mol(-1) and deltaS(E/Z) = 6.3 J K(-1) mol(-1). An interconversion pathway proceeding through ring-opening and formation of a zwitterion and an enol ether/alcohol intermediate of 1 is proposed.  相似文献   

5.
Urinary metabolites 5-methyl-5-[2-(2,6,6-trimethyl -3-oxo-1-cyclohexen-1-yl)-vinyl]-2-tetrahydrofuranone (1) and 5-[2-(6-hydroxymethyl-2, 6-dimethyl-3-oxo-1- cyclohexen-1-yl)vinyl]-5-methyl-2-tetrahydrofuranone (2) of retinoic acid have been synthesized from 4-[2,2,6-trimethyl-3-(tetrahydro-2 H -pyran-2-yl)oxy-1-cyclohexen-1-yl]-3-buten-2-one (4) and methyl 2-(3,3-ethylenedioxy-1-butenyl)-1, 3-dimethyl-4-oxo-2-cyclohexene-1-carboxylate (5) .  相似文献   

6.
The title sponge is shown to contain eight new sesquiterpenoids for which a common, unusual biogenetic origin is postulated. The compounds are shown to be: (–)-(1R*,4R*)-3-(3′-furyl)methyl-2-p-menthen-7-yl acetate ((–)- 8b ); two diols separated as the monoacetates (–)-(1S*,4R*)-3-(3′-furyl)methyl-l-hydroxy-2-p-menthen-7-yl acetate ((–)- 13a ) and the (–)-(1R*,4R*)-epimer (–)- 13b , the two C(4)-epimeric 4-ethoxy-3-(1′(7′),2′-p-menthadien-3′-yl)methyl-2-buten-4-olides ((+)- 14a and (–)- 14b ), (–)-3-(3′-furyl)methyl-7-nor-2-p-menthen-l-one ((–)- 11 ), (–)-(3Z)-1-(3′-furyl)-4,8-dimethylnona-3, 7-dien-2-yl acetate ((–)- 17 ), and (+)-3-(5′,7′-seco-2′(10′)-pinen-7′-yl)methylfuran ((+)- 15 ).  相似文献   

7.
The kinetics of the unusually fast reaction of cis- and trans-[Ru(terpy)(NH3)2Cl]2+ (with respect to NH3; terpy=2,2':6',2"-terpyridine) with NO was studied in acidic aqueous solution. The multistep reaction pathway observed for both isomers includes a rapid and reversible formation of an intermediate Ru(III)-NO complex in the first reaction step, for which the rate and activation parameters are in good agreement with an associative substitution behavior of the Ru(III) center (cis isomer, k1=618 +/- 2 M(-1) s(-1), DeltaH(++) = 38 +/- 3 kJ mol(-1), DeltaS(++) = -63 +/- 8 J K(-1) mol(-1), DeltaV(++) = -17.5 +/- 0.8 cm3 mol(-1); k -1 = 0.097 +/- 0.001 s(-1), DeltaH(++) = 27 +/- 8 kJ mol(-1), DeltaS(++) = -173 +/- 28 J K(-1) mol(-1), DeltaV(++) = -17.6 +/- 0.5 cm3 mol(-1); trans isomer, k1 = 1637 +/- 11 M(-1) s(-1), DeltaH(++) = 34 +/- 3 kJ mol(-1), DeltaS(++) = -69 +/-11 J K(-1) mol(-1), DeltaV(++) = -20 +/- 2 cm3 mol(-1); k(-1)=0.47 +/- 0.08 s(-1), DeltaH(++)=39 +/- 5 kJ mol(-1), DeltaS(++) = -121 +/-18 J K(-1) mol(-1), DeltaV(++) = -18.5 +/- 0.4 cm3 mol(-1) at 25 degrees C). The subsequent electron transfer step to form Ru(II)-NO+ occurs spontaneously for the trans isomer, followed by a slow nitrosyl to nitrite conversion, whereas for the cis isomer the reduction of the Ru(III) center is induced by the coordination of an additional NO molecule (cis isomer, k2=51.3 +/- 0.3 M(-1) s(-1), DeltaH(++) = 46 +/- 2 kJ mol(-1), DeltaS(++) = -69 +/- 5 J K(-1) mol(-1), DeltaV(++) = -22.6 +/- 0.2 cm3 mol(-1) at 45 degrees C). The final reaction step involves a slow aquation process for both isomers, which is interpreted in terms of a dissociative substitution mechanism (cis isomer, DeltaV(++) = +23.5 +/- 1.2 cm3 mol(-1); trans isomer, DeltaV(++) = +20.9 +/- 0.4 cm3 mol(-1) at 55 degrees C) that produces two different reaction products, viz. [Ru(terpy)(NH3)(H2O)NO]3+ (product of the cis isomer) and trans-[Ru(terpy)(NH3)2(H2O)]2+. The pi-acceptor properties of the tridentate N-donor chelate (terpy) predominantly control the overall reaction pattern.  相似文献   

8.
凌可庆 《有机化学》1996,16(6):518-523
本文研究了十七种2-芳基吲哚(1a-1q)在甲醇-乙酸介质中的亚甲基蓝(MB)敏化光氧化反应, 发现有十五种吲哚(1a-1o)以85%-95%的产率给出2,2'-二芳基-[2,3'-联-1H-吲哚]-3(2H)-酮(2a-2o), 而2-(4-硝基苯基]吲哚(1p)和2-联苯基吲哚(1q)则分别生成2-甲氧基-2-(4-硝基苯基)-1,2-二氢-3H-吲哚-3-酮(7p)和2-联苯基-4H-3,1-苯并恶嗪-4-酮(11q), 其中7p在分离过程中失去甲醇分子给出2-(4-硝基苯基)-3H-吲哚-3-酮(10p)。  相似文献   

9.
The stereoselective synthesis of both enantiomers of trifluoro frontalin (-)-(1S,5R)- and (+)-(1R,5S)-8, as well as of diastereomeric monofluoro frontalines (-)-(1R,2R,5R)-18 and (-)-(1R,2S,5R)-20, analogues of the bioactive component of the aggregation pheromone of the Scolytidae insect family, has been accomplished starting from (-)-(1R)- and (+)-(1S)-menthyl (S)-toluene-4-sulfinate as a source of chirality and methyl trifluoroacetate or fluoroacetate, respectively, as sources of fluorine. The C-1 stereocenters were installed via stereoselective epoxidation of beta-sulfinyl ketones 2 and 13 with diazomethane. The bicyclic core was obtained by totally stereocontrolled and chemoselective tandem Wacker oxidation/intramolecular ketalization of the intermediate unsatured sulfinyl diols 5, 15, and 19. Axially fluorinated (-)-20 elicited a strong electroantennographic response in laboratory tests on females of Dendroctonus micans, whereas equatorially fluorinated (-)-18 and the trifluoroanalogue (-)-8 showed modest responses. Field trials using (-)-20 were not indicative owing to the locally scarce population of D. micans, but it showed some attractiveness for other Coleoptera families.  相似文献   

10.
Wang L  Margerum DW 《Inorganic chemistry》2002,41(23):6099-6105
The disproportionation of chlorine dioxide in basic solution to give ClO2- and ClO3- is catalyzed by OBr- and OCl-. The reactions have a first-order dependence in both [ClO2] and [OX-] (X = Br, Cl) when the ClO2- concentrations are low. However, the reactions become second-order in [ClO2] with the addition of excess ClO2-, and the observed rates become inversely proportional to [ClO2-]. In the proposed mechanisms, electron transfer from OX- to ClO2(k1OBr- = 2.05 +/- 0.03 M(-1) x s(-1) for OBr(-)/ClO2 and k1OCl-= 0.91 +/- 0.04 M(-1) x s(-1) for OCl-/ClO2) occurs in the first step to give OX and ClO2-. This reversible step (k1OBr-/k(-1)OBr = 1.3 x 10(-7) for OBr-/ClO2, / = 5.1 x 10(-10) for OCl-/ClO2) accounts for the observed suppression by ClO2-. The second step is the reaction between two free radicals (XO and ClO2) to form XOClO2. These rate constants are = 1.0 x 10(8) M(-1) x s(-1) for OBr/ClO2 and = 7 x 10(9) M(-1) x s(-1) for OCl/ClO2. The XOClO2 adduct hydrolyzes rapidly in the basic solution to give ClO3- and to regenerate OX-. The activation parameters for the first step are DeltaH1(++) = 55 +/- 1 kJ x mol(-1), DeltaS1(++) = - 49 +/- 2 J x mol(-1) x K(-1) for the OBr-/ClO2 reaction and DeltaH1(++) = 61 +/- 3 kJ x mol(-1), DeltaS1(++) = - 43 +/- 2 J x mol(-1) x K(-1) for the OCl-/ClO2 reaction.  相似文献   

11.
(1R)-1-(9-Deazahypoxanthin-9-yl)-1,4-dideoxy-1,4-imino-L-ribitol [(+)-5] and (3S,4S)-1-[(9-deazahypoxanthin-9-yl)methyl]-4-(hydroxymethyl)pyrrolidin-3-ol [(-)-6] are the L-enantiomers of immucillin-H (D-ImmH) and DADMe-immucillin-H (D-DADMe-ImmH), respectively, these D-isomers being high affinity transition state analogue inhibitors of purine nucleoside phosphorylases (PNPases) developed as potential pharmaceuticals against diseases involving irregular activation of T-cells. The C-nucleoside hydrochloride D-ImmH [(-)-5) x HCl], now "Fodosine" is in phase II clinical trials as an anti-T-cell leukaemia agent, while D-DADMe-ImmH is a second generation inhibitor with extreme binding to the target enzyme and has entered the clinic for phase I testing as an anti-psoriasis drug. Since the enantiomers of some pharmaceuticals have revealed surprising biological activities, the L-nucleoside analogues (+)-5 x HCl and (-)-6, respectively, of D-ImmH and D-DADMe-ImmH, were prepared and their PNPase binding properties were studied. For the synthesis of compound (-)-6 suitable enzyme-based routes to the enantiomerically pure starting material (3S,4S)-4-(hydroxymethyl)pyrrolidin-3-ol [(-)-6] and its enantiomer were developed. The L-enantiomers (+)-5 x HCl and (-)-6 bind to the PNPases approximately 5- to 600-times less well than do the D-compounds, but nevertheless remain powerful inhibitors with nanomolar dissociation constants.  相似文献   

12.
Immunoassays for triazine herbicides were tested for their reaction to the variation of the tracer incubation time. By application of a sequential technique the measuring range of atrazine could be expanded to five decades and the total duration of the test could be reduced to about 30 min. In an optimized version a lower detection limit of 9 pmol/l (2 ng/l) was achieved. The detection limit of a sensitive immunoassay for terbuthylazine is also below the concentration limit demanded of the German drinking water regulation (100 ng/l) and reaches 130 pmol/l (30 ng/l). Short tracer incubation times did not lead to increased cross-reactivities in contrast to theoretical models [1, 2]. Different mechanisms, which could cause a shift of the center point of the calibration curve, are discussed, including kinetic considerations.Nomenclature ametryn 2-(ethylamino)-4-(isopropylamino)-6-(methylthio)-1,3,5-triazine - atrazine 2-(chloro)-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine - deethylatrazine 2-(amino)-4-(chloro)-6-(isopropylamino)-1,3,5-triazine - DMSO dimethylsulfoxide - DOC dissolved organic carbon - ELISA enzyme-linked immunosorbent assay - glyme 1,2-dimethoxyethane - hydroxyatrazine 2-(ethylamino)-4-(hydroxy)-6-(isopropylamino)-1,3,5-triazine - PBS phosphate buffered saline - propazine 2-(chloro)-4,6-bis(isopropylamino)-1,3,5-triazine - simazine 2-(chloro)-4,6-bis(ethylamino)-1,3,5-triazine - terbuthylazine 2-(tert-butylamino)-4-(chloro)-6-(ethylamino)-1,3,5-triazine - TLC thin-layer chromatography - TMB 3,3,5,5-tetramethylbenzidine - tracer enzyme (peroxidase) labeled hapten  相似文献   

13.
Several new acyclonucleoside purine and 8-azapurine analogs have been prepared from 2-amino-4,6-dichloropyrimidine ( 1 ) and 3-amino-1,2-propanediol ( 2a ) and 4-amino-1-butanol ( 2b ), respectively, as the starting materials. The new target compounds are: 2-amino-6-chloro-9-(2,3-dihydroxypropyl)purine ( 6a ), 2-amino-6-chloro-9-(4-hydroxybutyl)purine ( 6b ), 2-amino-6-chloro-9-(2,3-dihydroxypropyl)-8-azapurine ( 7a ), 2-amino-6-chloro-9-(4-hydroxybutyl)-8-azapurine ( 7b ), 9-(2,3-dihydroxypropyl)-8-azaguanine ( 8a ), 9-(4-hydroxybutyl)-8-azaguanine ( 8b ), 9-(2,3-dihydroxypropyl)-8-azathioguanine ( 9a ), and 9-(4-hydroxybutyl)-8-azathioguanine ( 9b ). Also, the requisite intermediate pyrimidine derivatives, 2,5-diamino-4-(2,3-dihydroxypropylamino)-6-chloropyrimidine ( 5a ) and 2,5-diamino-4-(4-hydroxybutylamino)-6-chloropyrimidine ( 5b ) are novel.  相似文献   

14.
The kinetics of transmetallation of [Mn(nota)](-) and [Mn(dota)](2-) was investigated in the presence of Zn(2+) (5-50-fold excess) at variable pH (3.5-5.6) by (1)H relaxometry. The dissociation is much faster for [Mn(nota)](-) than for [Mn(dota)](2-) under both experimental and physiologically relevant conditions (t(?) = 74 h and 1037 h for [Mn(nota)](-) and [Mn(dota)](2-), respectively, at pH 7.4, c(Zn(2+)) = 10(-5) M, 25 °C). The dissociation of the complexes proceeds mainly via spontaneous ([Mn(nota)](-)k(0) = (2.6 ± 0.5) × 10(-6) s(-1); [Mn(dota)](2-)k(0) = (1.8 ± 0.6) × 10(-7) s(-1)) and proton-assisted pathways ([Mn(nota)](-)k(1) = (7.8 ± 0.1) × 10(-1) M(-1) s(-1); [Mn(dota)](2-)k(1) = (4.0 ± 0.6) × 10(-2) M(-1) s(-1), k(2) = (1.6 ± 0.1) × 10(3) M(-2) s(-1)). The observed suppression of the reaction rates with increasing Zn(2+) concentration is explained by the formation of a dinuclear Mn(2+)-L-Zn(2+) complex which is about 20-times more stable for [Mn(dota)](2-) than for [Mn(nota)](-) (K(MnLZn) = 68 and 3.6, respectively), and which dissociates very slowly (k(3)~10(-5) M(-1) s(-1)). These data provide the first experimental proof that not all Mn(2+) complexes are kinetically labile. The absence of coordinated water makes both [Mn(nota)](-) and [Mn(dota)](2-) complexes inefficient for MRI applications. Nevertheless, the higher kinetic inertness of [Mn(dota)](2-) indicates a promising direction in designing ligands for Mn(2+) complexation.  相似文献   

15.
The enthalpies of formation of pure liquid and gas-phase (Z)-4-hydroxy-3-penten-2-one and 2,4-pentanedione are examined in the light of some more recent NMR studies on the enthalpy differences between gas-phase enthalpies of the two tautomers. Correlation gas chromatography experiments are used to evaluate the vaporization enthalpies of the pure tautomers. Values of (51.2 +/- 2.2) and (50.8 +/- 0.6) kJ.mol(-1) are measured for pure 2,4-pentanedione and (Z)-4-hydroxy-3-penten-2-one, respectively. The value of (50.8 +/- 0.6) kJ.mol(-1) can be contrasted to a value of (43.2 +/- 0.2) kJ.mol(-1) calculated for pure (Z)-4-hydroxy-3-penten-2-one when the vaporization enthalpy is measured in a mixture of tautomers. The difference is attributed to an endothermic enthalpy of mixing that destabilizes the mixture relative to the pure components. Calculation of new enthalpies of formation for (Z)-4-hydroxy-3-penten-2-one and 2,4-pentanedione in both the gas, Delta(f)H degrees (m)(g) = (-378.2 +/- 1.2) and (-358.9 +/- 2.5) kJ.mol(-1), respectively, and liquid phases, Delta(f)H degrees (m)(l) = (-429.0 +/- 1.0) and (-410.1 +/- 1.2) kJ.mol(-1), respectively, results in enthalpy differences between the two tautomers both in the liquid and gas phases that are identical within experimental error, and in excellent agreement with recent gas-phase NMR studies.  相似文献   

16.
There are two values, -26.0 and -27.7 kcal mol(-1), that are routinely reported in literature evaluations for the standard enthalpy of formation, Delta(f) H(o)(298), of formaldehyde (CH(2)=O), where error limits are less than the difference in values. In this study, we summarize the reported literature for formaldehyde enthalpy values based on evaluated measurements and on computational studies. Using experimental reaction enthalpies for a series of reactions involving formaldehyde, in conjunction with known enthalpies of formation, its enthalpy is determined to be -26.05+/-0.42 kcal mol(-1), which we believe is the most accurate enthalpy currently available. For the same reaction series, the reaction enthalpies are evaluated using six computational methods: CBS-Q, CBS-Q//B3, CBS-APNO, G2, G3, and G3B3 yield Delta(f) H(o)(298)=-25.90+/-1.17 kcal mol(-1), which is in good agreement to our experimentally derived result. Furthermore, the computational chemistry methods G3, G3MP2B3, CCSD/6-311+G(2df,p)//B3LYP/6-31G(d), CCSD(T)/6-311+G(2df,p)//B3LYP/6-31G(d), and CBS-APNO in conjunction with isodesmic and homodesmic reactions are used to determine Delta(f) H(o)(298). Results from a series of five work reactions at the higher levels of calculation are -26.30+/-0.39 kcal mol(-1) with G3, -26.45+/-0.38 kcal mol(-1) with G3MP2B3, -26.09+/-0.37 kcal mol(-1) with CBS-APNO, -26.19+/-0.48 kcal mol(-1) with CCSD, and -26.16+/-0.58 kcal mol(-1) with CCSD(T). Results from heat of atomization calculations using seven accurate ab initio methods yields an enthalpy value of -26.82+/-0.99 kcal mol(-1). The results using isodesmic reactions are found to give enthalpies more accurate than both other computational approaches and are of similar accuracy to atomization enthalpy calculations derived from computationally intensive W1 and CBS-APNO methods. Overall, our most accurate calculations provide an enthalpy of formation in the range of -26.2 to -26.7 kcal mol(-1), which is within computational error of the suggested experimental value. The relative merits of each of the three computational methods are discussed and depend upon the accuracy of experimental enthalpies of formation required in the calculations and the importance of systematic computational errors in the work reaction. Our results also calculate Delta(f) H(o)(298) for the formyl anion (HCO(-)) as 1.28+/-0.43 kcal mol(-1).  相似文献   

17.
根据甲磺酸达比加群酯工艺,合成了甲磺酸达比加群酯的7个杂质:3-【【【2-{[(4-氰基苯基)氨基]甲基}-1-甲基-1H-苯并咪唑-5-基】羰基】(吡啶-2-基)氨基】丙酸(A), 3-【【【2-【{[4-(乙氧基)叔胺基]苯基}氨基】甲基】-1-甲基-1H-苯并咪唑-5-基】羰基】(吡啶-2-基)氨基】丙酸乙酯盐酸盐(B), 3-【【【2-【{[(4-甲脒基)苯基]氨基}甲基】-1-甲基-1H-苯并咪唑-5-基】羰基】(吡啶-2-基)氨基】丙酸乙酯盐酸盐(C), 3-【【【2-【【【4-{[(己氧基)羰基]氨基亚甲胺基}苯基】氨基】甲基】-1-甲基-1H-苯并咪唑-5-基】羰基】(吡啶-2-基)氨基】丙酸甲酯盐酸盐(D), 3-【【【2-【【【4-【{[(己氧基)羰基]氨基}羰基】苯基】氨基】甲基】-1-甲基-1H-苯并咪唑-5-基】羰基】(吡啶-2-基)氨基】丙酸乙酯(E), 3-【【【2-【【【4-【{[(己氧基)羰基]氨基}亚氨甲基】苯基】氨基】甲基】-1-甲基-1H-苯并咪唑-5-基】羰基】(吡啶-2-基)氨基】丙酸(F), (Z)-3-【【【2-【【【4-【{[(N,N′-二己氧基)羰基]脒基}亚氨甲基】苯基】氨基】甲基】-1-甲基-1H-苯并咪唑-5-基】羰基】(吡啶-2-基)氨基】丙酸乙酯(G),其结构经1H NMR和ESI-MS确证。  相似文献   

18.
Enantiomerically pure alcohols (-)- and (+)-7-tert-butoxycarbonyl-6-endo-p-toluenesulfonyl-7-azabicyclo[2.2.1]hept-2-en-5-endo-ol ((-)-11 and (+)-11) have been obtained from the Diels-Alder adduct of N-(tert-butoxycarbonyl)pyrroel and 2-bromo-1-p-toluenesulfonylacetylene, including a resolution method. These two alcohols were converted into (+)- and (-)-5-exo-amino-7-(tert-butoxycarbonyl)-2,3-exo-isopropylidenedioxy-7-azabicyclo[2.2.1]heptane ((+)-18 and (-)-18) and (+)- and (-)-5-endo-amino-7-(tert-butoxycarbonyl)-2,3-exo-isopropylidenedioxy-7-azabicyclo[2.2.1]heptane ((+)-19 and (-)-19) after adequate functionalization and desulfonylation steps. The corresponding conformationally constrained bicyclic 1,2-diamines (+)-4, (-)-4, (+/-)-5, (+/-)-6, (+)-7, and (-)-7 were obtained from the protected precursors 18 and 19 and evaluated as glycosidase inhibitors. Diamines (+)-4, (-)-4, (+)-6, and (-)-6 can be seen as new nonpeptide molecular scaffolds for the design of peptide analogues.  相似文献   

19.
Bis(8-hydroxy quinoline-5-solphonate) cerium(III) chloride (Ce(QS)(2)Cl) (L) was synthesized and then used as a novel fluorescent sensor for anion recognition. Preliminarily study showed that fluorescence of L enhanced selectively in the presence of HPO(4)(2-) ion. This enhancement is attributed to a 1:1 complex formation between L and HPO(4)(2-) anion. The association constant of 1:1 complex of L-HPO(4)(2-) was calculated as 3.0×10(6). Thus, L was utilized as a basis for a selective detection of HPO(4)(2-) anion in solution. The linear response range of the proposed fluorescent chemo-sensor covers a concentration range of HPO(4)(2-) from 3.3×10(-7) to 5.0×10(-6) mol L(-1) with a detection limit of 2.5×10(-8) mol L(-1). L showed selective and sensitive fluorescence enhancement response toward HPO(4)(2-) ion in comparison with I(3)(-), NO(3)(-), CN(-), CO(3)(2-), Br(-), Cl(-), F(-), H(2)PO(4)(-) and SO(4)(2-) ions. It was probably attributed to the higher stability of the inorganic complex between HPO(4)(2-) ion and L. The method was successfully applied for analysis of phosphate ions in some fertilizers samples.  相似文献   

20.
Microbial transformation of xanthohumol using the culture broth of Cunninghamella echinulata NRRL 3655 afforded (2S)-8-[4"-hydroxy-3"-methyl-(2"-Z)-butenyl]-4',7-dihydroxy-5-methoxyflavanone (5) and (2S)-8-[5"-hydroxy-3"-methyl-(2"-E)-butenyl]-4',7-dihydroxy-5-methoxyflavanone (6). Xanthohumol (1) and flavanone 6 as well as (E)-2"-(2"'-hydroxyisopropyl)-dihydrofurano[2",3":4',3']-2',4-dihydroxy-6'-methoxychalcone (2), (2S)-2"-(2"'-hydroxyisopropyl)-dihydrofurano[2",3":7,8]-4'-hydroxy-5-methoxyflavanone (3) obtained with Pichia membranifaciens showed antimalarial activity against Plasmodium falciparum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号