首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 472 毫秒
1.

This study aims to: (1) Acquire the radon level in closed office rooms, providing radon exposure data for preliminary health risk assessment of office-working population. (2) Pre-analyze the relationship between radon concentration and indoor temperature, relative humidity. (3) Estimate seasonal, annual and total radon effective dose for ordinary office-working population. The results show that the 24-h or 8-h average radon concentrations in closed office rooms were about 32.0 Bq/m3 and 29.5 Bq/m3 during detection period, and the estimated effective doses in office rooms calculated by using 24-h and 8-h average radon concentrations were all far below that in residential environment.

  相似文献   

2.
The fact that 50% of the natural radiation dose to which humans are exposed is caused by radon gas makes indoor radon measurements important. In this study, levels of indoor radon gas were measured in 204 houses in Kilis, Osmaniye and Antakya using passive nuclear track detectors. Cr-39 radon detectors were left in the living rooms of participants’ houses, then analyzed at the Radon Laboratory of Health Physics Department in Çekmece Nuclear Research and Training Center (ÇANEM) of Atomic Energy Agency of Turkey (TAEK). Average indoor radon activity concentrations for Kilis, Osmaniye and Antakya were 50 Bq/m3 (1.26 mSv/y), 51 Bq/m3 (1.29 mSv/y) and 40 Bq/m3 (1.01 mSv/y), respectively.  相似文献   

3.

Radon concentration was measured by using 39CR track etched detectors in five fertilizer warehouses in the Punjab province of Pakistan. The average concentration of radon was determined to be 20–88 Bq m−3. Annual effective dose (AED) and excess lifetime cancer risk (ELCR) have also been assessed using the models of UNSCEAR and ICRP. The corresponding annual dose and ELCR to the workers of warehouses have been estimated to be 0.30–1.02 mSv year−1 and 0.44–1.02%, respectively.

  相似文献   

4.
Plastic PicoRad detectors with activated charcoal have been used for radon monitoring in local kindergartens and schools in two cities, Kalisz and Ostrów Wielkopolski, in the region of Greater Poland. Detectors were exposed for a standard time of 48 h during the autumn and winter of 2011 in 103 rooms (Kalisz) and 55 rooms (Ostrów Wlkp), respectively. The detectors were calibrated in the certified radon chamber of the Central Laboratory for Radiological Protection in Warsaw, Poland. The arithmetic and geometric means of indoor radon concentrations in the examined rooms were 46.0 and 30.3 Bq/m3 for Kalisz and 48.9 and 29.8 Bq/m3 for Ostrów Wlkp, respectively. The measured levels of the indoor radon concentrations were relatively low, since the main source of indoor radon for these low storey (max. three storeys) buildings is radon escaping from the underlying soil with a low 226Ra concentration (~15 Bq/m3). Therefore, the calculated annual effective doses from that source for the children in Kalisz and Ostrów Wlkp were also low 0.35 mSv.  相似文献   

5.

Concentrations of radon in drinking water collected from 32 locations of Hemavathi river basin, Karnataka, India have been measured by emanometry method. The radon concentration in water ranged from 2.7 ± 0.1 to 138.5 ± 1.5 Bq l−1 with a geometrical mean of 25.3 ± 1.1 Bq l−1. The study revealed that about 82.35% of drinking water samples contained radon concentration more than 11.1 Bq l−1, the limit is fixed by Environmental Protection Agency. Among the different parameters measured, concentration of radon showed weak correlation with chloride and no correlation with alkalinity, pH, nitrate, sulphate, fluoride and total dissolved substance.

  相似文献   

6.
7.
Summary Aone year survey of indoor radon and thoron concentrations was carried out in offices and dwellings of the Gunma prefecture, Japan. A passive integrating radon and thoron discriminative monitor was used in the survey. The annual mean radon concentration was 22±14 Bq . m-3, and ranged from 12 to 93 Bq . m-3 among the 56 surveyed rooms. Radon concentration in offices was generally higher than that in the dwellings, with the arithmetic averages of 29 and 17 Bq . m-3, respectively. Radon concentrations were generally lower in the traditional Japanese wooden houses than those houses built with other building materials. Seasonal variation of indoor radon was also observed in this survey. Compared to summer and autumn, radon concentrations were generally higher in spring and winter. The mean value of thoron to radon ratio was estimated to be 1.3, higher values were observed in the dwellings than in the offices. The annual effective dose from the exposure to indoor radon was estimated to be 0.47 mSv after taking the occupancy factors of offices and dwellings into account.  相似文献   

8.
In this work, the radionuclide activity concentrations of 226Ra, 232Th and 40K in surface soils and radon levels in dwellings of Karabük, Turkey were determined in order to evaluate the environmental radioactivity. Concentrations of 226Ra, 232Th and 40K radionuclides were determined using gamma spectrometry with using HPGe detector. The etch track detectors (CR-39) were used to determine the distribution of radon concentrations. The average activity concentrations for 226Ra, 232Th and 40K were found as 21.0, 23.5 and 363.5 Bq kg−1, respectively. The calculated average annual effective dose equivalent from the outdoor terrestrial gamma radiation from 226Ra, 232Th and 40K is 53.5 μSv y−1. The average radon concentration and annual effective dose equivalent of 222Rn in Karabük dwellings were obtained 131.6 Bqm−3 and 3.32 mSv y−1, respectively. The evaluated data were compared with the data obtained from different countries.  相似文献   

9.

In this study, a tubular radon removal device and a movable one were prepared and investigated. The tubular radon removal device in an air conditioning return air system reduced the radon progeny by more than 84%. The radon progeny concentration reached equilibrium after 4 h when it was used only for a ventilation at the rate of 10 h−1. Radon progeny removal efficiency was above 95% for the movable radon removal device, when the ventilation rate was 17 h−1. The results showed that the radon removal devices can effectively remove the radon progeny in the air.

  相似文献   

10.

Air radon survey was carried out at different underground locations at Kolkata using radon monitor. Average radon concentration for basements was found to be 22.70 ± 1.12 Bq/m3 with maximum 59.00 ± 7.18 Bq/m3 and minimum 8.50 ± 3.14 Bq/m3. Average level for sub-ways was 23.05 ± 2.59 Bq/m3 fluctuating between maximum 39.00 ± 1.24 Bq/m3 and minimum 13.50 ± 1.78 Bq/m3. In comparison, open air background at basement entrance was 19.44 ± 1.06 Bq/m3 and subway entrance was 18.58 ± 1.14 Bq/m3. Annual effective dose was calculated to assess probable health risk. Radon concentration level and annual effective dose were found well below safe levels recommended by International Agencies WHO and UNSCEAR.

  相似文献   

11.

In the present work, radon concentrations were measured in surface and underground water samples in Faridabad District of Southern Haryana, India using an active radon monitor based on alpha scintillation technique and results have been inter-compared. The average radon concentration in the underground water samples was observed to be 4 times higher than in the surface water samples. The estimated annual effective dose varied from 5.7 to 58.5 μSvy?1 with an average of 24.2 μSvy?1 for underground water samples and 1.1 to 12.5 μSvy?1 with an average of 6.7 μSvy?1 for surface water samples. The estimated annual effective dose for both type of samples was found to be less than 0.1 mSvy?1, which is the safe limit as suggested by World Health Organisation and EU Council.

  相似文献   

12.
The paper presents and discusses radon activity concentrations in Cypriot groundwater systems as a function of the background lithology and seasonal/meteorological conditions using an airborne radon monitoring system (ARM) after separation of radon by out-gassing. Radiometric analysis of groundwater samples obtained from non-contaminated systems showed that radon concentration in groundwaters varies strongly (0.1–10 Bq L−1) depending mainly on the hosting geological matrix but also to lesser degree on atmospheric/meteorological conditions. The associated excess annual dose has been estimated to range between 10−6 and 10−4 mSv y−1, which is an insignificant contribution to the radiation exposure of the Cypriot population caused by airborne radon (0.5 ± 0.4 mSv y−1).  相似文献   

13.
The aim of this study is to determine the relationship of radon concentrations between dwellings and the schools located in the same regions and to obtain related indoor average radon concentration dwelling-school correction factor for similar locations. The research has been carried out by determining indoor radon concentrations at schools and dwellings located at the same districts in the selected two separate research fields called The Former Adapazari region and The New Adapazari region in the city of Adapazari using a total of 81 Cr-39 passive radon detectors for 75 days. The average radon concentrations have been determined for the dwellings and the schools in 15 districts of the Former Adapazari region as 59.9 Bq m−3 and 57.1 Bq m−3, respectively. The results in 4 districts of the New Adapazari region were 63.5 Bq m−3 for the dwellings and 61.0 Bq m−3 for the schools. Moreover, the annual effective doses were calculated as 1.33 mSv/y and 1.41 mSv/y for the dwellings of Former Adapazari and New Adapazari, respectively. It was seen that the doses received in the dwellings are about four times the doses received in the schools. The indoor radon concentration dwelling-school correction factor was found to be 1.04±0.01 for the research area.  相似文献   

14.

In this investigation, the passive estimation of radon (Rn222), thoron (Rn220) and their progenies have been measured in the dwellings of Reasi district of Jammu & Kashmir for a period of 1 year. These estimations have been done with the help of latest developed single entry Pin-hole based dosimeters and progeny sensors based on deposition. The annual Equilibrium factors for 222Rn, 220Rn, and their progenies have been calculated separately for each dwellings The average annual effective dose was found to be 0.9 ± 0.2 mSv/y for 222Rn, which is less than prescribed limit of ICRP. The results obtained indicate no vital health hazards because of exposure of Rn222, Rn220 and their progenies.

  相似文献   

15.

Salinity, water logging, high nitrate, fluoride and dissolved uranium concentration in drinking water of southwest Punjab has impacted the local population leading to health issues and additional burden on economy. Though it was known that both U and its daughter products especially Rn contribute to radiological dose to the population through drinking water, there were no correlation studies carried out between these radioactive elements in U impacted regions of southwest Punjab. In this study, an initiative has been taken to assess the doses due to dissolved radon in drinking water. In addition, the U–Rn couple is evaluated in detail along with other hydrochemical parameters. The radon concentration ranges from 360–1700 Bq/m3 for Faridkot and 140–1400 Bq/m3 for Muktsar for both seasons and the related average total dose due to radon for both season of Faridkot and Muktsar are 9.79 µS/year and 7.74 µS/year respectively. The total dissolved uranium is in range of 16–350 µg/L for Faridkot and 14–106 µg/L for Muktsar for both seasons. An inverse correlation was observed between Rn and U, which could be attributed to diverse geochemistry of U and Rn in groundwater.

  相似文献   

16.
An important parameter for evaluating the possibilities of use of enclosed spaces (mines, caves, spas, etc.) for therapeutic purposes is the concentration of radon in different conditions of ventilation. The aim of this paper is to present the results of continuous radon gas measurement that were performed for ten days, at 20 min time intervals in different locations from Cacica salt mine (Romania) using a portable radon monitor. The average radon concentration was found to be between 96.5 ± 4.76 Bq/m3 and 20.5 ± 1.30 Bq/m3. These values are suitable for therapeutic applications and are useful for future experiments regarding the development of the radon therapy and speleotherapy in this salt mine.  相似文献   

17.
Measurement of radon is of interest both for the health risk assessment and development of radon therapy in enclosed spaces like as caves, mines and spas. In Romania, radon therapy is not in use, yet. The development of this treatment method in mines from our country involves primarily, the evaluation of radon levels in the salt mines. In this paper, the results of radon gas measurement that were performed at Ocna Dej salt mine (Romania) are presented. The radon measurements were performed using two systems: radon monitor Pylon AB-5 system and CIS-P5M system. The average radon concentration was found to be between 9.14 ± 5.10 Bq/m3 and 31.70 ± 2.76 Bq/m3. These radon levels are lower in comparison to those reported for mines, caves or spas in other countries where radon therapy and speleotherapy is frequently in use. Radon concentration and environmental conditions from Ocna Dej salt mine are suitable for therapeutic applications.  相似文献   

18.
The temporal variation of the radon concentration, and the radon and thoron concentrations every 3 months for a year were measured using two types of devices in a landmark skyscraper, the Tokyo Metropolitan Government Daiichi Building. In the measurement of temporal variation of the radon concentration using a pulse type ionization chamber, the average radon concentration was 21 ± 13 Bq m?3 (2–68 Bq m?3). The measured indoor radon concentration had a strong relationship with the operation of the mechanical ventilation system and the activities of the office workers. The radon concentration also increased together with temperature. Other environmental parameters, such as air pressure and relative humidity, were not related to the radon concentration. In the long-term measurements using a passive radon and thoron discriminative monitor, no seasonal variation was observed. The annual average concentrations of radon and thoron were 16 ± 8 and 16 ± 7 Bq m?3, respectively. There was also no relationship between the two concentrations. The annual average effective dose for office workers in this skyscraper was estimated to be 0.08 mSv y?1 for 2000 working hours per year. When considering the indoor radon exposure received from their residential dwellings using the annual mean radon concentration indoors in Japan (15.5 Bq m?3), the annual average effective dose was estimated to be 0.37 mSv y?1. This value was 31 % of the worldwide average annual effective dose.  相似文献   

19.
Indoor radon concentrations were measured in 10 821 pupils primary schools of Osijek by means of the Radhome silicon detector. The values ranged from 15 to 300 Bq/m3 with the arithmetic and geometric means of 93.4 and 70.6 Bq/m3, respectively. Ten years continuous radon measurements performed with the LR-115 nuclear track detector in three houses of different construction and town area gave means of 27, 96 and 23 Bq/m3; the indoor Rn concentration for a heating period was a factor of 1.5 higher than for the warm season. The average effective dose equivalent for the primary school pupils was 2.8 mSv/y (with occupancy factors of 0.6, 0.2 and 0.2 for home, school and outdoors, respectively). For citizens of Osijek it was 1.7 mSv/y.  相似文献   

20.
In the environs of uranium mining, milling and processing facilities and in the uranium mineralized terrain, a little higher ambient radon concentration and gamma radiation level may be expected in comparison with natural background. The present study gives a brief account of atmospheric radon concentration, gamma absorbed dose rate and radiation dose received by the members of public in the vicinity of Narwapahar uranium mine. The ambient radon concentration in the air in the study area was found to vary from 5 to 107 Bq m−3 with geometric mean of 24 Bq m−3 and geometric standard deviation of 1.74 Bq m−3. The measured gamma absorbed dose rate in air at 1 m above the ground ranged from 87 to 220 nGy h−1 with an overall arithmetic mean of 128 ± 18.5 nGy h−1. The mean annual effective dose received by the members of public from inhalation of radon and its progeny and external gamma exposure was estimated to be 0.32 mSv year−1, which is comparable to other reported values elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号