首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A novel two-sense support for flexural tests has been designed and manufactured in Ikerlan. The aim of this support is to do two-sense bending fatigue tests. In order to reduce the displacement corresponding to a given stress, a novel test configuration, designated as five-point bending, is modelled analytically. Basically, it is a three-point configuration with two supports at the ends that exert forces in the same sense as the applied load. In this way, a partial clamping is obtained that can be modelled by concentrated loads. The model has been checked carrying out quasi-static three-point and five-point bending tests at different spans in unidirectional carbon/epoxy composite specimens. Flexural modulus and the out-of-plane shear modulus have been obtained by linear regression in both cases, after having obtained experimentally the stiffness of the system.  相似文献   

2.
Elastic and viscoelastic properties of sugarcane bagasse-filled poly(vinyl chloride) were determined by means of three-point bending flexural tests and dynamic mechanical and thermal analysis. The elastic modulus, storage modulus, loss modulus, and damping parameter of the composites at fibre contents of 10, 20, 30, and 40% in mass were determined, as well as those of the unfilled matrix. There was a correlation between the elastic modulus and storage modulus of the composites. Moreover, the elastic and viscoelastic properties of the composites were highly influenced by fibre content.  相似文献   

3.
Summary: The aim of this study was to evaluate flexural properties of a partially biodegradable glass fibre reinforced composite after water immersion and dehydration. In addition water sorption and solubility was determined. E-glass fibres were preimpregnated with a biodegradable biopolymer of poly(hydroxyproline) amide (PA). The preimpregnated fibres were then further-impregnated with Bis-GMA–TEGDMA-resin and light polymerized (n = 6). There was also specimen made of plain polymer and FRC without PA. After water immersion and/or dehydration, the specimens were tested by the three-point bending test. The flexural strength and Young's modulus was increased in most cases after water immersion and dehydration except for PA containing specimens. The water sorption was <50 µg/mm3 for all studied specimens and solubility was 20 µg/mm3 for specimens without PA and 35 µg/mm3 for specimens with PA.  相似文献   

4.
Uniaxial stresses were evaluated under flexural, tensile and torsional tests with various fibre volume fractions, vf, and specimen sizes to develop simple and effective predictions on the quasi-static strength of compression-moulded short-glass-fibre-reinforced phenolic resin. The distributions in fibre orientation and fibre length were represented by Weibull and normal distributions, regardless of vf. The size effect was characterized by uniaxial stress testing and Weibull statistical analysis. The effective volume theory (EVT) was used to predict the quasi-static strength for vf of 0.0 with a scale parameter of 108.2 MPa and a shape parameter of 8.92. Strength prediction while considering Veff and vf was proposed by applying the EVT of the resin matrix to a method that combined a modified rule of mixtures and the Thai-Hill failure criterion. The measured value agreed well with the prediction for each Veff and vf, regardless of manufacturing defects in the matrix resin.  相似文献   

5.
An experimental study was focused on investigation of the failure properties of plain woven glass/epoxy composites under off-axis and biaxial tension loading conditions. Four fibre orientations (0°, 15°, 30° and 45° with respect to the load direction) were considered for off-axis tests and two biaxial load ratios for biaxial tests to study failure characteristics and mechanism. Four classical polynomial failure criteria - Tsai-Hill, Hoffman, Tsai-Wu and Yeh-Stratton - were analysed comparatively to predict off-axis and biaxial failure strength of the composites. For failure prediction of the plain woven composites under multiaxial tension loads, the Tsai-Wu criterion was modified by introducing an interaction coefficient F12 obtained from 45° off-axis or biaxial tension tests and the Yeh-Stratton criterion was modified with the interaction coefficient B12 = 0 or obtained from the biaxial tension test. The former criterion was found to have higher accuracy. Finally, according to macroscopic and microscopic studies, the failed specimens showed mostly distinct failure with a specific fracture orientation, mainly exhibiting fibre or fabric tensile fracture mode and a combination of matrix cracking and delamination, both in off-axis and cruciform samples.  相似文献   

6.
This study aimed to investigate the effect of resin impregnation on the interfacial shear strength (IFSS), thermogravimetric (TG) and fourier transform infrared (FT-IR) of sugar palm (Arenga pinnata) fibres. In addition, the effect of resin impregnation on the mechanical properties of sugar palm fibre reinforced unsaturated polyester (UP) composites was also studied. The fibres were impregnated with UP via vacuum resin impregnation process at a pressure of 600 mmHg for 5 min. Composites of 10, 20, 30, 40 and 50 % fibre loadings were fabricated and tested for tensile and flexural properties. It was observed that the impregnation process caused the fibres to be enclosed by UP resin and this gave a strong influence to the increase of its interfacial bonding by the increase of its IFSS from single fibre pull-out test. It was also observed with TG and FT-IR spectra that the impregnated fibre had lower moisture uptake than the control and there was no significant increase in thermal stability of the impregnated fibre. The sequence of fibre decomposition started from the evaporation of moisture, hemicelluloses, cellulose, lignin and finally ash content and the presence of these components were proven by FT-IR spectra. For the composite specimens, due to the high interfacial bonding of the impregnated fibre and the matrix, the impregnated composites showed consistently higher tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus and toughness than the control samples. It was also observed that 30 % fibre loading gave optimum properties.  相似文献   

7.
The influence of loading frequency on the fatigue behaviour of a coir fibre reinforced polypropylene (PP) composite was studied. The mechanical behaviour was assessed through monotonic tensile and flexural tests, followed by cyclic bending fatigue tests employing a new specimen geometry, with loading frequencies ranging from 5 to 35 Hz. Results revealed that higher strain rates during monotonic loading lead to higher flexural strength, and higher loading frequencies in cyclic tests promote reduction in fatigue life. Fractographic examination showed that one of the reasons for reduced fatigue life under higher loading frequencies might be related to increased heat generation by hysteresis, leading to a fatigue damage mechanism governed by temperature effects. The results, thus, encourage the development of good practices regarding test frequencies in order to be able to uncouple thermal and mechanical effects and provide relevant data for structural integrity assessments.  相似文献   

8.
This paper examines the effect of glass fibre reinforcements on the mechanical and morphological properties of polyurethane rigid foams. The processing parameters of the polyurethane foam were maintained constant while the influence of the filler was evaluated in terms of fibre mass content variation (5%, 10% and 20%) and fibre length variation (12.5 mm, 25 mm and 50 mm). Tests were carried out in compression, three-point bending, tension and shear for all material configurations, the variation in fibre mass content having a larger influence on mechanical properties than fibre length. The structure of the specimens was investigated using Scanning Electron Microscopy and Computer Tomography in order to investigate the filler influence on morphology and the scatter in results.  相似文献   

9.
The different compressive and tensile moduli of fibre reinforced composites have been considered in the analysis of the flexural and shear moduli of I-beams. Firstly, the neutral axis has been determined analytically and then, assuming that location of the neutral axis, the analytical flexural modulus of I-beams has also been obtained. In order to assess the proposed procedure, virtual pure bending and three-point bending tests at different spans have been carried out using the finite element method. The compressive and tensile moduli have been taken into account by defining two parts in the numerical models. The numerical flexural and shear moduli have been determined by reducing the data obtained in the virtual tests. Analytical and numerical results are in good agreement. Therefore, the flexural modulus determined by the proposed analytical approach can be introduced as a material property in the finite element method.  相似文献   

10.
The applicability of different strain measurement techniques for carbon/epoxy laminates under quasi-static tensile and tension-tension fatigue loads was studied. Strain gauges, mechanical extensometers, digital image correlation and 2 D camera systems were applied on laminates tested at angles of 0°, 45°, 60°, 90° and ±45°. In addition, displacements recorded by the servo-hydraulic piston were monitored and compared to local strain measurement techniques. Representative examples that illustrate characteristics and limits of each technique in quasi-static and fatigue tests are discussed. Influences of the respective method of strain measurement, the specimen surface, fibre direction and processes in the specimens during tests on the recorded stress-strain behaviour and on the calculated stiffness are presented. Recommendations for accurate strain measurement of anisotropic laminates based on the results are made.  相似文献   

11.
The objective of this study was to determine the flexural strength, flexural modulus, Vickers hardness of a packable composite (Surefil), and an ormocer (Definite) in comparison with a microhybrid composite (Z-100), a microfil composite (Silux Plus) and a polyacid-modified composite resin (Dyract). Flexural strength and flexural modulus were determined using a three-point bending device. Microhardness was measured with a Vickers indentor. The specimens of each material were prepared according to manufacturer's instructions. The specimens were stored in artificial saliva at pH 6, all at 37°C. The groups were tested at the beginning of the test, at 3 months and at 6 months. Flexural strength values of Surefil and Definite showed a progressive increase. The highest MPa values were determined for Surefil (134.4 MPa) and the lowest MPa values were obtained for Dyract (59.6 MPa). The highest flexural modulus values were revealed for Surefil (10.000 GPa). Z-100, Silux Plus and Definite showed a tendency to decline in relation to time for their flexural modulus. GPa values of Silux Plus were stable at 3 and 6 months. Vickers hardness numbers showed that Surefil was the hardest and Dyract was the weakest material. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Polymer composite foams or syntactic foams containing 0.9, 1.76, 2.54, 3.54 and 4.5 vol% of E-glass short fibers were processed and subjected to a three-point bending test. The results show that the flexural modulus increased with fiber content, with the exception of 1.76% and 3.5% of fibers. This deviation was due to a higher void content for 1.76% and a non-uniform distribution of fibers in the polymer composite foam system for 3.5%. However, in general, the incorporation of chopped strand fibers improved the flexural behavior of the syntactic foam system without much variation in density, thus making the reinforced syntactic foams act as improved core materials for sandwich and other structural applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A flexible FR4 substrate is not only a core part of current integrated circuit assemblies, but also a promising material for flexible electronics applications. The thin composite sheet typically contains a single-ply of glass fabric which is impregnated with epoxy resin. The single-ply reinforcement leads to large heterogeneity along the through-thickness direction, which causes different behavior in the flexural and tensile moduli. However, no comparative study between the flexural and tensile moduli has been presented for commercialized flexible FR4 substrates. In this study, the flexural and tensile moduli of flexible FR4 substrates were measured using a three-point bending test and a direct tensile test, respectively. Three FR4 substrates were prepared with a different number of glass fabric plies and different types of epoxy resin, with a total thickness ranging from 100 to 150 μm. The effect of the span-to-depth ratio on the flexural modulus was first examined in order to obtain the true flexural modulus from the three-point bending test. For comparison, the strain was accurately measured using a video extensometer to obtain the tensile modulus. In-plane anisotropy and temperature dependence were also investigated for both the flexural and tensile moduli.  相似文献   

14.
A strong lightweight material (X-VOx) was formulated by nanocasting a conformal 4 nm thin layer of an isocyanate-derived polymer on the entangled worm-like skeletal framework of typical vanadia aerogels. The mechanical properties were characterized under both quasi-static loading conditions (dynamic mechanical analysis, compression and flexural bending testing) as well as high strain rate loading conditions using a split Hopkinson pressure bar (SHPB). The effects of mass density, moisture concentration and low temperature on the mechanical properties were determined and evaluated. Digital image correlation was used to measure the surface strains through analysis of images acquired by ultra-high speed photography, indicating nearly uniform compression at all stages of deformation during compression. The energy absorption of X-VOx was plotted as a function of the density, strain rate and temperature, and compared with that of plastic foams. X-VOx remains ductile even at ?180 °C, a characteristic not found in most materials. This unusual ductility is derived from interlocking and sintering-like fusion of nanoworms during compression. X-VOx emerges as an ideal material for force protection under impact.  相似文献   

15.
The study is focused on thermoset composites reinforced with carbon and glass woven fabrics. Two types of thermoset resins, for example, epoxy and vinyl ester were used as the matrix. Varying concentrations of internal mold releasing (IMR) agent was used in the resin. The composites were cured both at room temperature and at 80°C. The flexural properties were studied using 3‐point bending test method. Further theinter‐laminar shear strength (ILSS) was investigated using the short beam shear strength test based on 3‐point bending. The flexural modulus of room temperature cured epoxy resin is higher than that of high temperature cured epoxy resin and cured vinyl ester resin. The flexural modulus is lowest for 1% IMR sample in epoxy system and the modulus for 0% and 2% epoxy are not significantly different. Lowest flexural strength and modulus can be observed for the combination of reinforcement and curing conditions for samples containing 1% IMR for the epoxy systems. Carbon fiber is found to be less compatible with the vinyl ester resin system and the addition of IMR to the resin degraded the properties further. Inter‐laminar shear strength for epoxy‐based composites is not much affected by presence of IMR, but in case of vinyl ester based composites there is a decrease in ILSS on addition of IMR agent. The study explains variation in flexural properties on addition of IMR and change of curing conditions. These results can be used for ascertaining variation in mechanical properties in real use.  相似文献   

16.
30 wt% aligned untreated long hemp fibre/PLA (AUL) and aligned alkali treated long hemp fibre/PLA (AAL) composites were produced by film stacking and subjected to accelerated ageing. Accelerated ageing was carried out using UV irradiation and water spray at 50 °C for four different time intervals (250, 500, 750 and 1000 h). After accelerated ageing, tensile strength (TS), flexural strength, Young's modulus (YM), flexural modulus and mode I fracture toughness (KIc) were found to decrease and impact strength (IS) was found to increase for both AUL and AAL composites. AUL composites had greatest overall reduction in mechanical properties than that for AAL composites upon exposure to accelerated ageing environment. FTIR analysis and crystallinity contents of the accelerated aged composites support the results of the deterioration of mechanical properties upon exposure to accelerated ageing environment.  相似文献   

17.
Summary: Nonwoven mats from hemp and polypropylene fibres in various proportions were produced and hot pressed to make composite material. The effect of hemp fibre content and anisotropy in nonwoven mats resulting from the carding technology were examined on the basis of the three-point bending, tensile and impact properties of the resultant composite materials. Because of the hydrophilic nature and poor dimensional stability of cellulosic fibres due to swelling, the effect of water sorption on mechanical performances was also investigated. Optimal mechanical properties were achieved in composites made from 40–50% of hemp fibre by weight. As it was expected, better mechanical properties were found in the specimens cut from the composite sheets parallel to the direction of carding. A strong decrease in three point bending properties was noticed after immersing the composite samples in distilled water for 19 days, while the impact strength increased. Double carding of raw materials resulted in a decreased anisotropy in composite material.  相似文献   

18.
Natural fiber-reinforced nanocomposites were prepared by incorporating wild cane grass fiber and organically modified montmorillonite (MMT) nanoclay into polyester resin. The composites were formulated up to a maximum volume of fiber of approximately 40% and their mechanical properties were investigated. The mean tensile strength and tensile modulus of nanoclay-filled wild cane grass fiber composites are 6.3% and 18.3% greater than those of wild cane grass fiber composites, respectively, without addition of nanoclay at maximum percentage volume of fiber. The mean flexural strength of nanocomposites at maximum percentage volume of fiber was increased to a maximum of 221 Mpa and flexural modulus to 4.2 Gpa. The mean impact strength of nanoclay-filled wild cane grass fiber composites was increased to 376.7 J/m at maximum percentage volume of fiber. The weight loss of nanoclay-filled wild cane grass fiber/polyester composites was 30% and 22% less than that of composites without nanoclay at maximum percentage volume of fiber. The results indicated that the use of nanoclay showed significant improvement in all the mechanical properties of wild cane grass fiber-reinforced composites.  相似文献   

19.
This work presents an experimental investigation into the effect of cornhusk fibre (CHF) content upon the mechanical properties, water absorption behaviour, and swellability of CHF/polyester (PE) composites used in water environments. The CHF/PE was prepared at different volume fractions using hot compression (~175 °C). To investigate the rate of water absorption and swellability behaviours, composites were immersed in water for varying durations. The mechanical properties of composites (i.e. tensile, bending and compression strengths) immersed in water were carefully evaluated. The results indicate that the composites with an increased CHF content and a longer immersion time are prone to lower mechanical properties. The large amount of water absorbed by the composite reduces the bonding interface between CHF and PE, which is responsible for the damage. Moreover, the amount of water absorbed and the swellability increase with a corresponding increase in the CHF content. The lowest water absorption (2.39%) was detected in 20% CHF and 80% PE composite immersed for 6 days. The findings gathered in this research endorse CHF/polyester thermoset composites as a viable alternative for construction applications.  相似文献   

20.
We developed value-added, high-strength lignocellulosic biopolymers by exploiting high-lignin biomass waste of palms. Lignocellulosic biopolymers were prepared by hot-pressing microfibrillated raw and alkaline pre-treated date and coconut fibers and leaves powders consisting of (≤53–≤106 μm) particles in the range 140–180 °C. The obtained biopolymers were subjected to three-point bending strength, water resistance, structural morphology (SEM), thermal stability (TGA/DTG), spectroscopy (FTIR), and crystallinity (XRD) analyses. Findings showed that raw fiber-based and alkaline-pretreated biopolymers exhibited bending strength, water resistance, and thermal stability (~200 °C) superior to those of leaf-based biopolymers. Furthermore, lignocellulosic biopolymers prepared from smaller particles showed enhanced bending and thermal properties, compared to those prepared from large particles. By mechanical and thermal properties, the optimum results were observed for biopolymers pre-treated with 1 wt% NaOH, except for coconut leaf-based biopolymers. Results were correlated to chemical composition and particle size of milled lignocellulosic biomass, allowing for efficient lignin condensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号