首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Electrically and thermally conductive polymer composites on the basis of biodegradable poly(lactic acid) (PLA) were developed and studied in this work. Pristine single-walled carbon nanotubes (CNTs) and powder of natural graphite (G) were used as fillers in polymer composites. PLA-based composites were prepared by melt-compounding method. The volume resistivity of PLA/CNT composites can be changed by more than ten orders of magnitude compared to that for neat PLA. The thermal conductivity of PLA/G composites can be changed from 0.193 W⋅m−1⋅K−1 (neat PLA) up to 2.73 W⋅m−1⋅K−1. Loading small quantity of CNTs into PLA/G composites increases the thermal conductivity not less than by 40% of magnitude. Besides, all developed PLA-based composites are suitable for processing by injection molding, extrusion or additive manufacturing technology (3D printing).  相似文献   

2.

In this study, tetradecanol–palmitic acid/expanded perlite composites containing carbon fiber (TD-PA/EP-CF CPCMs) were prepared by a vacuum impregnation method. Binary eutectic mixtures of PA and TD were utilized as thermal energy storage material in the composites, where EP behaved as supporting material. X-ray diffraction demonstrated that crystal structures of PA, TD, EP, and CF remained unchanged, confirming no chemical interactions among raw materials besides physical combinations. The microstructures indicated that TD-PA was sufficiently absorbed into EP porous structure, forming no leakage even in molten state. Differential scanning calorimetry estimated the melting temperature of TD-PA/EP-CF CPCM to 33.6 °C, with high phase change latent heat (PCLH) of 138.3 kJ kg−1. Also, the freezing temperature was estimated at 29.7 °C, with PCLH of 137.5 kJ kg−1. The thermal cycling measurements showed that PCM composite had adequate stability even after 200 melting/freezing cycles. Moreover, the thermal conductivity enhanced from 0.48 to 1.081 W m−1 K−1 in the presence of CF. Overall, the proposed CPCMs look promising materials for future applications due to their appropriate phase change temperature, elevated PCLH, and better thermal stability.

  相似文献   

3.
One of the greatest challenges in the application of organic phase change materials (PCMs) is to increase their thermal conductivity while maintaining high phase change enthalpy. 1-Tetradecanol/Ag nanowires composite PCM containing 62.73 wt% (about 11.8 vol%) of Ag nanowires showed remarkably high thermal conductivity (1.46 W m−1 K−1) and reasonably high phase change enthalpy (76.5 J g−1). This behavior was attributed to the high aspect ratio of Ag nanowires, few thermal conduct interfaces, and high interface thermal conductivity of Ag nanowires in the composite PCM. These results indicated that Ag nanowires might be strong candidates for thermal conductivity enhancement of organic PCMs.  相似文献   

4.
Polyurethane (PU) composite foams were successfully reinforced with different concentrations (1 wt%, 2 wt%, 5 wt%) of nutmeg filler. The effect of nutmeg filler concentration on mechanical, thermal, antimicrobial and anti-aging properties of PU composite foams was investigated. PU foams were examined by rheological behavior, processing parameters, cellular structure (Scanning Electron Microscopy analysis), mechanical properties (compression test, impact test, three-point bending test, impact strength), thermal properties (Thermogravimetric Analysis), viscoelastic behavior (Dynamic Mechanical Analysis) as well as selected application properties (thermal conductivity, flammability, apparent density, dimensional stability, surface hydrophobicity, water absorption, color characteristic). In order to Disc Diffusion Method, all PU composites were tested against selected bacteria (Escherichia coli and Staphylococcus aureus). Based on the results, it can be concluded that the addition of 1 wt% of nutmeg filler leads to PU composite foams with improved compression strength (e.g. improvement by ~19%), higher flexural strength (e.g. increase of ~11%), improved impact strength (e.g. increase of ~32%) and comparable thermal conductivity (0.023–0.034 W m−1 K−1). Moreover, the incorporation of nutmeg filler has a positive effect on the fire resistance of PU materials. For example, the results from the cone calorimeter test showed that the incorporation of 5 wt% of nutmeg filler significantly reduced the peak of heat release rate (pHRR) by ca. 60% compared with that of unmodified PU foam. It has been also proved that nutmeg filler may act as a natural anti-aging compound of PU foams. The incorporation of nutmeg filler in each amount successfully improved the stabilization of PU composite foams. Based on the antibacterial results, it has been shown that the addition of nutmeg filler significantly improved the antibacterial properties of PU composite foams against both Gram-positive and Gram-negative bacteria.  相似文献   

5.
Rigid polyurethane (PU) foams were successfully filled with different weight ratios of melamine (1 wt%, 5 wt%, 10 wt%), silica (0.1 wt%) and ionic liquid, 1-Ethyl-3-methylimidazolium chloride, [EMIM]Cl (0.3 wt%). The aim of this study was to improve the flame retardancy of PU foams and to develop the synergistic effect between melamine, silica and ionic liquid on the flame-retardant PU foams. The influence of different loadings of the fillers was examined. The results showed that in comparison with unfilled foam, all modified compositions are characterized by higher density (41–46 kg m−3), greater compression strength (134–148 kPa), and comparable thermal conductivity (0.023–0.026 W m−1 K−1). Moreover, the reaction to fire of the PU composites has been investigated by the cone calorimeter test. The results showed that the fire resistance of PU foams containing as little as 1 wt% of melamine is significantly improved. For example, the results from the cone calorimeter test showed that the incorporation of the melamine, silica and ionic liquid significantly reduced the peak of heat release rate (pHRR) by ca. 84% compared with that of unmodified PU foam. SEM results showed that incorporated fillers can form an intumescent char layer during combustion which improves the reaction to fire of the composite foams.  相似文献   

6.
Normally, the effective dispersion of thermal conductive fillers is a prerequisite for ensuring thermally conductive networks formed in polymer composites. In this work, a facile method was provided by using cellulose to alter the distribution state of boron nitride (BN) for the preparation of high thermally conductive polylactic acid (PLA). After powder mixing and hot‐pressing process, the Cellulose@BN was located at the boundaries of PLA granules to form consecutive thermally conductive networks with more compact structure. Morphology observation and FTIR spectra confirmed that BN edges absorbed on the cellulose surface under the intermolecular hydrogen bond interaction between PLA and BN. At the BN content of 25 wt%, contrasted with traditional BN/PLA segregated polymer composites (SPCs), thermal conductivity coefficient of Cellulose@BN/PLA SPCs improved by 53.5% from 0.71 to 1.09 Wm?1 K?1. This enhancement could be attributed to the reason that the cellulose regulated stripe aggregation allowed the BN connect with each other more compact, thus a thermal conduction networks with reduced phonon scattering were formed.  相似文献   

7.
Carbon fillers including multi-walled carbon nanotubes (MWCNTs), carbon black (CB) and graphite were introduced in a cyanate ester (CE) resin, respectively. The effects of the fillers on the electrical and thermal conductivity of the resin were measured and analyzed based on the microscopic observations. MWCNTs, CB and graphite exhibited percolation threshold at 0.1 wt%, 0.5 wt% and 10 wt%, respectively. The maximal electrical conductivity of the composites was 1.08 S/cm, 9.94 × 10−3 S/cm and 1.70 × 10−5 S/cm. MWCNTs showed the best enhancement on the electrical conductivity. The thermal behavior of the composites was analyzed by calorimetry method. Incorporation of MWCNTs, CB and graphite increased the thermal conductivity of CE resin by 90%, 15% and 92%, respectively. Theoretical models were introduced to correlate the thermal conductivity of the CE/MWCNTs composite. The interfacial thermal resistance between CE resin and MWCNTs was 8 × 10−8 m2K/W and the straightness ratio was 0.2. The MWCNTs were seriously entangled and agglomerated. Simulation results revealed that thermal conductivity of the CE/MWCNTs composites can be substantially elevated by increasing the straightness ratio and/or filler content of MWCNTs.  相似文献   

8.
Polylactic acid (PLA) was modified by poly (butylene adipate-co-terephthalate) (PBAT) and nano-attapulgite (AT) using the melt blending technique. Ethylene-butyl acrylate-glycidyl methacrylate (E-BA-GMA) was used as a compatibilizer which can bond the AT nanoparticles with PLA/PBAT matrix by interaction between the epoxy and hydroxyl groups. The effects of the AT content on the mechanical properties, thermal properties, crystallinity and morphology of PLA/PBAT/ATT nanocomposites were investigated. The results showed that the tensile strength, elongation at break and impact strength of PLA/PBAT could be simultaneously increased by incorporating AT nanoparticles. PLA/PBAT/AT nanocomposites possessed higher thermal stability than pure PLA/PBAT. In the ternary composite system of PLA/PBAT/AT, AT acted as a heterogeneous nucleating agent and was able to increase the crystallization temperature. When the AT content was low (≤2.5 wt%), AT nanoparticles could uniformly disperse in the PLA/PBAT matrix. In general, AT was an effective filler to reinforce and toughen PLA/PBAT blend simultaneously, and the PLA/PBAT/AT nanocomposite with 2.5 wt% AT exhibited a good combination of strength and toughness.  相似文献   

9.

Thermal performance of building materials is an important parameter from the point of view of energy consumption for heating buildings, which is obviously related to environmental protection standards. Thermal parameters of roofing slates were measured for samples from two different formations in the Czech Republic. These were rocks of lower Carboniferous Culm facies of Moravice Formation and Silesian Unit of Flysch Moravian-Silesian Carpathians. Thermal conductivity and thermal effusivity measurements were performed with use of TCi analyser. Thermal parameters were obtained in parallel and perpendicular direction to the bedding in rocks. Thermal conductivity of the Moravian slates in the direction perpendicular to the bedding ranges from 1.43 to 1.79 W m?1 K?1, while for samples from Carpathian region this parameter ranges from 1.99 to 3.15 W m?1 K?1. High values of thermal conductivity correlate to higher quartz content in the rocks. The measured thermal parameters (conductivity, effusivity, diffusivity) are strongly depending on the direction of measurement. Thermal conductivity of analysed rocks increases along with increase in temperature. The increase in thermal conductivity value is more significant in case of Moravian slates. In practice, the obtained results indicate that the traditional building material, such as roofing slates, shows better insulation properties at lower temperatures, while in conditions of strong sunlight the temperature conductivity increases. In case of roofing slates, which tend to be highly anisotropic, the essential information is the direction of thermal parameters measurement. Slates, due to their specific texture, are characterized by a very high thermal anisotropy coefficient.

  相似文献   

10.
The thermoelectric properties of the intermetallic semiconductor RuGa3 are investigated. Large single crystals were grown to study intrinsic properties. To investigate the influence of grain boundaries in this system, the single crystals were ground to powder and densified using spark plasma sintering treatment. The initial chemical composition is maintained with the introduction of grain boundaries. Electrical resistivity data show semiconducting behavior for single- and polycrystalline samples. The high thermal conductivity (>500 W K−1 m−1) obtained for single crystals at low temperatures is reduced by a factor of 10 in the polycrystalline specimen. The thermopower shows a change between n-type and p-type behavior with a sharp minimum of about −700 μV K−1 at 38 K for single crystals, which is completely suppressed by the introduction of grain boundaries. A comparison with RuIn3 shows the potential of RuGa3 as a thermoelectric material in its single- and polycrystalline form.  相似文献   

11.
《先进技术聚合物》2018,29(6):1706-1717
Biodegradable poly(lactic acid) (PLA)/poly(butylene adipate‐co‐terephthalate) (PBAT) blends and films were prepared using melt blending and blowing films technique in the presence of chain extender‐Joncryl ADR 4370F. The ADR contains epoxy functional groups and used as a compatibilizer. The morphological, mechanical, rheological, thermal, and crystalline properties of the PLA/PBAT/ADR blown films were studied. Scanning electron microscopy micrographs of the films revealed more ductile deformation with increasing PBAT content. The addition of PBAT enhanced the toughness of the PLA film. Tensile tests indicated that the elongation at break increased from 20.5% to 334.6% in the machine direction and from 7.1% to 715.9% in the transverse direction. The Young modulus increased from 2690.5 to 395.6 MPa in the machine direction and from 2623.5 to 154.0 MPa in the transverse direction. The sealing strength of 40/60/0.15 PLA/PBAT/ADR film was the highest among all the samples up to 9.4 N 15 mm−1. These findings gave important implications for designing and manufacturing polymer packaging materials.  相似文献   

12.
A diamine‐based benzoxazine monomer (Bz) and a liquid crystalline epoxy monomer (LCE) are synthesized, respectively. Subsequently, a benzoxazine‐epoxy interpenetrating polymer network (PBEI) containing liquid crystalline structures is obtained by sequential curing of the LCE and the Bz in the presence of imidazole. The results show that the preferential curing of LCE plays a key role in the formation mechanism of liquid crystalline phase. Due to the introduction of liquid crystalline structures, the thermal conductivity of PBEI increases with increasing content of LCE. When the content of LCE is 80 wt %, the thermal conductivity reaches 0.32 W m?1 K?1. Additionally, the heat‐resistance of PBEI is superior to liquid crystalline epoxy resin. Among them, PBEI55 containing equal weight of Bz and LCE has better comprehensive performance. Its thermal conductivity, glass transition temperature, and the 5 % weight loss temperature are 0.28 W m?1 K?1, 160 °C, and 339 °C, respectively. By introducing boron nitride (BN) fillers into PBEI55, a composite of PBEI/BN with the highest thermal conductivity of 3.00 W m?1 K?1 is obtained. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1813–1821  相似文献   

13.
《Comptes Rendus Chimie》2016,19(3):333-341
In this study, an artificial neural network was optimized using a genetic algorithm in order to estimate the thermal conductivity of ionic liquids at different temperatures and pressures. Experimental thermal conductivity data of 41 ionic liquids (400 experimental data points) in the range from 0.10 to 0.22 W m−1 K−1 were used to obtain the proposed method for the temperature range of 273–390 K and the pressure range of 100–20,000 kPa. In addition, the molecular mass M and structure of molecules, represented by the number of well-defined groups forming the molecule, were provided as input parameters in order to characterize the different molecules of ionic liquids. A heterogeneous set of ionic liquids includes cations such as imidazolium, ammonium, phosphonium, pyrrolidinium, and pyridinium. It also includes anions such as halides, sulfonates, tosylates, imides, borates, phosphates, acetates, and amino acids. The whole dataset was divided into a training set with 300 experimental data points and a prediction set with 100 experimental data points. Several architectures were studied, and the optimum weights for the network were determined. The results showed that the proposed method to estimate the thermal conductivity of ionic liquids at different temperatures and pressures presented a good accuracy with lower deviations such as AARD less than 0.91% and R2 of 0.9969 for the training set, and AARD less than 0.84% with R2 of 0.9963 for the prediction set.  相似文献   

14.
The effect of montmorillonite clay (MMT) and/or chain extender (CE) on rheological, morphological and biodegradation properties of PLA/PBAT blend was investigated. The biodegradation behavior was evaluated by CO2 evolution in soil burial. CE incorporation resulted in an increase in the complex viscosity of PLA/PBAT blends, an increase in PLA crystallinity and a decrease in the dispersed phase diameter. MMT incorporation resulted in an increase in the complex viscosity, more pronounced shear-thinning behavior and a decrease in the dispersed phase diameter. CE incorporation resulted in a slight effect in the rheological properties of PLA/PBAT blend in the presence of MMT. Unfilled PLA/PBAT blend presented the highest amount of evolved CO2, and the micrographs indicated that degradation tends to occur on the surface. MMT delayed biodegradation of PLA/PBAT blends even although their surfaces presented some cracks and holes in a few localized regions. PLA/PBAT + CE blend presented the lowest amount of evolved CO2.  相似文献   

15.
DOPO and boron nitride (BN) fillers with different particle sizes and several loadings were employed to improve the properties of cyanate ester (CE) resin. The effects of BN content and particle size on the thermal conductivity of the BN‐DOPO/CE ternary composites were discussed. The influence of enhancing the thermal conductivity of the ternary composites on their flame retardancy was studied. The consequences showed that increasing the thermal conductivity of BN‐DOPO/CE composites had an active impact on their flame retardancy. Approving flame retardancy of the ternary composites was certified by the high limiting oxygen index (LOI), UL‐94 rating of V‐0, and low heat release rate (HRR) and total heat release (THR). For instance, in contrast with pure CE matrix, peak of HRR (pk‐HRR), average of HRR (av‐HRR), THR, and average of effective heat of combustion (av‐EHC) of CEP/BN0.5 μm/10 composite were decreased by 51.7%, 33.8%, 18.7%, and 18.9%, respectively. Thermal gravimetry analysis (TGA) showed that the addition of BN fillers improves the thermal stability of the composites. Moreover, the ternary composites possess good dielectric properties. Their dielectric constants (ε) are less than 3, and dielectric loss tangent (tgδ) values are lower than neat CE resin.  相似文献   

16.
Poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends were prepared using melt processing. The effects of maleic anhydride grafted PLA (PLA-g-MA) and calcium carbonate (CaCO3) content on mechanical, thermal, and morphological properties of the blends were investigated. PLA-g-MA was synthesized by varying monomer and initiator contents using a reactive melt-grafting process. Tensile properties of PLA/PBAT blend were enhanced with adding 2 phr of PLA-g-MA. SEM micrographs exhibited the improvement of interfacial adhesion between PLA and PBAT in the compatibilized blend. Moreover, thermal stability of the blends improved with presence of PLA-g-MA. With increasing CaCO3 content, Young’s modulus of the composites increased.  相似文献   

17.
[Bi1.68Ca2O4]RS[CoO2]1.69 (BCCO) sample and Ag-BCCO composites (with 10, 20 or 30 wt% Ag) have been prepared by the spray-drying technique and uniaxially/isostatically packed. Scanning electron microscopy reveals that the Ag particles are well distributed in the BCCO cobaltite matrix at low Ag contents. The Ag particles have an important effect on densification and grain orientation of the samples, with a direct impact on their electrical conductivity. The electrical conductivity is higher for the uniaxial samples and increases with the Ag content up to 20% in weight, while the Seebeck coefficient is hardly affected. These features induce an improvement of the power factor, reaching a maximum value of 2.2 μW K?2 cm?1 at ~1050 K for the uniaxial sample with 20 wt% Ag. Our results suggest that the spray-drying technique is a promising method to obtain composites with a well-dispersed secondary phase.  相似文献   

18.
Foamed polylactide (PLA), PLA–PBAT (poly (butylene adipate‐co‐terphathalate)) blend and their composites with CaCO3 were prepared in a batch process using supercritical carbon dioxide (CO2) at 12 MPa and 45°C. The solubility of CO2 and its diffusion patterns in different PLA samples was investigated. PLA systems had a relatively high CO2 solubility related to the carboxyl groups. CO2 desorption behaviors in PLA systems first followed the Fickian diffusion mechanism in short time and then decreased slowly to a plateau. The addition of both PBAT and CaCO3 into PLA impeded the desorption of CO2. In the presence of second phase PBAT, nanoparticles CaCO3 and dissolved CO2, the PLA crystallization behavior investigated by DSC technique was greatly changed. As the desorption time increased, the gas induced crystallinity slightly decreased in consequence of less CO2 content in each system and thus less plasticization effect. The cell morphology of foamed PLA and PLA composites showed interesting microstructure patterns. The prepared pure PLA foam exhibits a typical bimodal structure because of the foaming in both the amorphous and crystalline zones. With PBAT and CaCO3 into PLA, the composite foam presented significant increase in cell uniformity and cell density. With less CO2 content in each PLA sample, the cell structure showed interesting variation. Pure PLA foam presented transition from bimodal structure to more uniform cell structure with decreased cell density. In contract, PLA–PBAT foam show unfoamed regions because of none CO2 left in the separated PBAT phase. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
We prepared PANI/tetradecanol/MWNTs composites via in-situ polymerization. DSC results indicated that the composites are good form-stable phase change materials (PCMs) with large phase change enthalpy of 115 J g−1. The MWNTs were randomly dispersed in the composites and significantly enhanced the thermal conductivity of the PCMs from 0.33 to 0.43 W m−1 K−1. The form-stable PCMs won’t liquefy even it is heated at 80°C, so that the MWNTs were fixed in the composite and the phase separation of the MWNTs from PANI/tetradecanol/MWNTs composites won’t occur.  相似文献   

20.
Phase morphology exerts a tremendous influence on the properties of polymer blends. The development of the blend morphology depends not only on the intrinsic structure of the component polymers but also on extrinsic factors such as viscosity ratio, shearing force and temperature in the melt processing. In this study, various poly (butylene adipate-co-terephthalate) (PBAT) materials with different melt viscosity were prepared, and then poly (lactic acid) (PLA)/PBAT blends with different viscosity ratio were prepared in a counter-rotating twin-screw extruder under constant processing conditions. The influence of viscosity ratio on the morphology, mechanical, thermal and rheological properties of PLA/PBAT (70/30 w/w) blends was investigated. The experimental results showed that the morphology and properties of PLA/PBAT blends strongly depended on the viscosity ratio. Finer size PBAT phase were observed for viscosity ratio less than 1 (λ < 1) compared to samples with λ > 1. It was found that the interfacial tensions of PLA and PBAT were significantly different when the viscosity ratio was changed, the lowest interfacial tensions (0.12 mN/m) was obtained when the viscosity was 0.77. Additionally, the maximal tensile strength in PLA/PBAT blends were obtained when the viscosity ratio was 0.44, while the maximal impact properties were obtained when the viscosity ratio was 1.95.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号