首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The X-ray crystal structures of a series of new compounds (H3O)2[{Mn(H2O)1.5}3{Re6Se8(CN)6}2]·19H2O (1), (Me4N)2[{Co(H2O)1.5}3{Re6S8(CN)6}2]·13H2O (2), (Me4N)2[{Co(H2O)1.5}3{Re6Se8(CN)6}2]·3H2O (3), (Et4N)2[{Mn(H2O)2}3{Re6Se8(CN)6}2]·6.5H2O (4), (Et4N)2[{Ni(H2O)2}3{Re6S8(CN)6}2]·6.5H2O (5), and (Et4N)2[{Co(H2O)2}3{Re6S8(CN)6}2]·10H2O (6) are reported. All six compounds are isostructural crystallizing in cubic space group with four formulae per unit cell. For compounds 1, 3-5 the following parameters were found: (1) a=19.857(2) Å, R1=0.0283; (3 at 150 K) a=19.634(1) Å, R1=0.0572; (4) a=20.060(2) Å, R1=0.0288; (5) a=19.697(2) Å, R1=0.0224. The structures consist three-dimensional cyano-bridged framework formed by cyano cluster anions [Re6Q8(CN)6]4−, Q=S, Se and transition metal cations, M2+=Mn2+, Co2+, Ni2+. Water molecules and large organic cations Me4N+ and Et4N+ are included in cavities of this framework. Porosity of the framework, its ability to accommodate different cations and water molecules by little changes in the structure, as well as distortion of coordination framework under loss of water of crystallization is discussed.  相似文献   

2.
The reaction of the cluster salt K4[Re4Te4(CN)12]·5H2O with NdCl3·6H2O was studied in either an acidic medium (HCl) or in a water solution in the presence of the following organic agents: hexafluoroacetylacetonate, 2,2′-bipyridine or 1,10-phenanthroline (phen). The crystal structures of four new compounds have been solved by single crystal X-ray diffraction analysis: (H)[{Nd(H2O)5}{Re4Te4(CN)12}]·5.5H2O (1) (space group P21/c, framework structure), K2[{Nd(H2O)7}2{Re4Te4(CN)12}2]·8H2O (2) (space group С2/c, isolated structure), K0.5H0.5[{Nd(H2O)5}{Re4Te4(CN)12}]·3H2O (3) (space group Сmcm, layered structure) and (phenH)[{Nd(H2O)2(phen)2}{Re4Te4(CN)12}]·11H2O (4) (space group С2/c, chain structure). 1,10-Phenanthroline was found to have been incorporated into the structure of compound 4, whilst hexafluoroacetylacetonate and 2,2′-bipyridine did not enter the structures of 2 and 3. It was shown that the structures of compounds 2-4 differ dramatically from that found for compound 1, which was obtained in the absence of the organic agents.  相似文献   

3.
Reactions of Ln2O3 and trans-4-pyridylacrylic acid (4-Hpya) in EtOH/H2O or MeOH/H2O produced two new lanthanide/4-pya complexes [Ln(4-pya)3(H2O)2]2 (1: Ln = Eu; 2: Ln = La) in low yields. However, reactions of LnCl3 · 6H2O with 4-Hpya/aqueous ammonia in EtOH/H2O or MeOH/H2O gave rise to 1 or 2 in higher yields. Both compounds were structurally characterized by elemental analysis, IR spectroscopy and X-ray analysis. Compounds 1 · 2EtOH · 2H2O and 2 · 2MeOH · 2H2O were confirmed to possess one-dimensional polymeric chain structures. In the structure of 1, each Eu(III) adopts a monocapped square-antiprism coordination geometry and each dimer [Eu(4-pya)3(H2O)2]2 within the chain is interconnected by two pairs of different bridging 4-pya ligands. On the other hand, each La(III) of 2 takes a bicapped square-antiprism coordination geometry and each dimer [La(4-pya)3(H2O)2]2 within the chain is linked by two pairs of tridentate bridging 4-pya ligands. The luminescent properties of 1 and 2 in the solid state were investigated.  相似文献   

4.
Thirteen novel 3d-4f heteronuclear coordination polymers based on the pyridine-2,6-dicarboxylic acid (H2pda) and imidazole ligands, HIm[(pda)3MLn(Im)2(H2O)2]·3H2O (Im = imidazole; M = Co, Ln = Pr (1), Gd (2), Dy (3), Er (4); M = Mn, Ln = Pr (5), Sm (6), Gd (7), Dy (8), Er (9)), HIm[(pda)3CoSm(Im)2(H2O)2]·2H2O (10), [(Im)4M(H2O)2][(pda)4La2(H2O)2]·2H2O (M = Co (11), Mn (12)), and [(pda)6Co3Pr2(H2O)6]·6H2O (13), have been prepared and structurally characterized. X-ray crystallographic analyses revealed that these complexes display four different types of structures. Complexes 1-9 are isostructural, and possess 1-D chain structures constructed by alternately arrayed nine-coordinated Ln(III) (Ln = Pr, Sm, Gd, Dy, Er) and six-coordinated M(II) (M = Mn, Co) ions. Complex 10 exhibits a unique one-dimensional structure, in which two independent chains are parallel viewed down the a-axis and anti-parallel viewed down the c-axis. Complexes 11 and 12 are isostructural and display 1-D homometallic chain structures. Complex 13 is a 3D framework fabricated through PrN3O6 and CoO6 polyhedrons as building blocks. The variable-temperature solid-state dc magnetic susceptibilities of complexes 2, 3, 4, 9 and 13 have been investigated. Antiferromagnetic exchange interactions were determined for these five complexes.  相似文献   

5.
Treatment of RnGeCl4−n with {S(C6H3SH)2O} (1) afforded the stable phenoxathiin-4,6-dithiolate compounds [{S(C6H3S)2O}GeR2] [n = 2; R = Et (2), Ph (3)] and [{S(C6H3S)2O}GeRCl] [n = 1; R = Et (4), Ph (5)]. Treatment of GeCl4 with 1 in benzene afforded the dichloro compound [{S(C6H3S)2O}GeCl2] (8) at 7 °C. Bromo compounds [{S(C6H3S)2O}GeRBr] [R = Et (6), Ph (7)] and [{S(C6H3S)2O}GeBr2] (9) were synthesized by halogen exchange from the appropriate chloro derivative using KBr/HBr. X-ray structure determinations of diorganyl dithiolate compounds 2 and 3 revealed that germanium atom is contained in a boat–chair-shaped eight-membered central ring and displays a tetrahedral geometry. In contrast, compounds 46 display a boat–boat-shaped central ring with a significant intramolecular transannular O···Ge interaction. The geometry of the pentacoordinate Ge atom in these last complexes may be described as distorted trigonal bipyramidal with a 62–65% distortion displacement.  相似文献   

6.
7.
New stable heteroleptic germanium(II) and tin(II) compounds [(SiMe3)2N-E14-OCH2CH2NMe2]n (E14 = Ge, n = 1 (1), Sn, n = 2 (2)) have been synthesized and their crystal structures have been determined by X-ray diffraction analysis. While compound 1 is monomer stabilized by intramolecular Ge ← N coordination, compound 2 is associated to dimer via intermolecular dative Sn ← O interactions.  相似文献   

8.
Two new charge-transfer salts, [CpFeCpCH2N(CH3)3]4[PMo12O40] · CH3CN (1) and [CpFeCpCH2N(CH3)3]4[GeMo12O40] (2), were synthesized by the traditional solution synthetic method and their structures were determined by single-crystal X-ray analysis. Salt 1 belongs to the triclinic space group P1, and salt 2 belongs to the triclinic space group . There exist the complex interactions of the cationic ferrocenyl donor and Keggin polyanion in the solid state. The solid state UV-Vis diffuse reflectance spectra indicate the presence of a charge-transfer band climbing from 450 nm to well beyond 900 nm for 1, a charge-transfer band from 460 to 850 nm with λmax = 630 nm for 2.The EPR spectra of salts 1 and 2 at 77 K show a signal at g = 2.0048 and 1.9501, respectively, ascribed to the delocalization of one electron in reduced Keggin ion in salt 1 and the MoVI in [GeMo12O40]4− is partly reduced to MoV owing to the charge-transfer transitions taking place between the ferrocenyl donors and the POM acceptors. The two compounds were also characterized by IR spectroscopy and cyclic voltammetry.  相似文献   

9.
Chiral “P-N-P” ligands, (C20H12O2)PN(R)PY2 [R = CHMe2, Y = C6H5 (1), OC6H5 (2), OC6H4-4-Me (3), OC6H4-4-OMe (4) or OC6H4-4-tBu (5)] bearing the axially chiral 1,1′-binaphthyl-2,2′-dioxy moiety have been synthesised. Palladium allyl chemistry of two of these chiral ligands (1 and 2) has been investigated. The structures of isomeric η3-allyl palladium complexes, (R′ = Me or Ph; Y = C6H5 or OC6H5) have been elucidated by high field two-dimensional NMR spectroscopy. The solid state structure of [Pd(η3-1,3-Ph2-C3H3){κ2-(racemic)-(C20H12O2)PN(CHMe2)PPh2}](PF6) has been determined by X-ray crystallography. Preliminary investigations show that the diphosphazanes, 1 and 2 function as efficient auxiliary ligands for catalytic allylic alkylation but give rise to only moderate levels of enantiomeric excess.  相似文献   

10.
The energies and structures of possible intermediates in the dinitrogen extrusion from diazidophenylborane 4a to give phenylborylene 11a were determined using density functional (B3LYP), multiconfigurational (CASSCF and MRMP2), and coupled cluster (CCSD(T)) computations in conjunction with basis sets of up to cc-pVTZ quality. Formation of 11a and nitrogen from 4a is an exothermic process (−21 kcal mol−1). The triplet electronic ground state of azidophenylborylnitrene 5a (PhBN4) is only 26 kcal mol−1 higher in energy than 4a and the phenyl shift in 5a to yield N-azidophenyliminoborane 7a is highly exothermic.  相似文献   

11.
Four copper(I) cyanide coordination polymers containing 2-(n-pyridyl)benzimidazole ligands, namely [Cu2(CN)(2-PyBIm)]n (1), [Cu2(CN)2(3-PyHBIm)]n (2), {[Cu3(CN)3(4-PyHBIm)4] · 2H2O}n (3) and [Cu5(CN)3(4-PyBIm)2]n (4), have been synthesized and characterized by X-ray crystallography. Complex 1 is a one-dimension coordination polymer in which 2-(2-pyridyl)benzimidazole is deprotonated and adopts a bridging tridentate coordination mode. Complex 2 has ladder-like structure in which 2-(3-pyridyl)benzimidazole does not deprotonate and acts as a bidentate bridge. Complex 3 displays a saddle-shaped helical chain constructed through μ2-cyanide group and the outstretched neutral 2-(4-pyridyl)benzimidazole monodentate ligand. Complex 4 shows two-dimension layer polymeric structure in which deprotonated 2-(4-pyridyl)benzimidazole acts as a tridentate bridging ligand. The cyanide groups in four complexes all act as bidentate bridging ligands. These complexes are thermal stable and display luminescence in the solid states.  相似文献   

12.
The novel rhenium pentahydride complex [ReH5(PPh3)2(PTA)] (2) was synthesized by dihydrogen replacement from the reaction of [ReH7(PPh3)2] with PTA in refluxing THF. Variable temperature NMR studies indicate that 2 is a classic polyhydride (T1(min) = 133 ms). This result agrees with the structure of 2, determined by X-ray crystallography at low temperature. The compound shows high conformational rigidity which allows for the investigation of the various hydride-exchanging processes by NMR methods. Reactions of 2 with equimolecular amounts of either HFIP or HBF4 · Et2O at 183 K afford [ReH5(PPh3)2{PTA(H)}]+ (3) via protonation of one of the nitrogen atoms on the PTA ligand. When 5 equivalents of HBF4 · Et2O are used, additional protonation of one hydride ligand takes place to generate the thermally unstable dication [ReH42-H2)(PPh3)2{PTA(H)}]2+ (4), as confirmed by 1H NMR and T1 analysis. IR monitoring of the reaction between 2 and CF3COOD at low temperature shows the formation of the hydrogen bonded complex [ReH5(PPh3)2{PTA?DOC(O)CF3}] (5) and of the ionic pair [ReH5(PPh3)2{PTA(D)?OC(O)CF3}] (6) preceding the proton transfer step leading to 3.  相似文献   

13.
Reactions of Ru3(CO)12 with diphosphazane monoselenides Ph2PN(R)P(Se)Ph2 [R = (S)-∗CHMePh (L4), R = CHMe2 (L5)] yield mainly the selenium bicapped tetraruthenium clusters [Ru44-Se)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] (1, 3). The selenium monocapped triruthenium cluster [Ru33-Se)(μsb-CO)(CO)72-P,P-Ph2PN((S)-∗CHMePh)PPh2}] (2) is obtained only in the case of L4. An analogous reaction of the diphosphazane monosulfide (PhO)2PN(Me)P(S)(OPh)2 (L6) that bears a strong π-acceptor phosphorus shows a different reactivity pattern to yield the triruthenium clusters, [Ru33-S)(μ3-CO)(CO)7{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (9) (single sulfur transfer product) and [Ru33-S)2(CO)52-P,P-(PhO)2PN(Me)P(OPh)2}{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (10) (double sulfur transfer product). The reactions of diphosphazane dichalcogenides with Ru3(CO)12 yield the chalcogen bicapped tetraruthenium clusters [Ru44-E)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] [R = (S)-∗CHMePh, E = S (6); R = CHMe2, E = S (7); R = CHMe2, E = Se (3)]. Such a tetraruthenium cluster [Ru44-S)2(μ- CO)(CO)8{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (11) is also obtained in small quantities during crystallization of cluster 9. The dynamic behavior of cluster 10 in solution is probed by NMR studies. The structural data for clusters 7, 9, 10 and 11 are compared and discussed.  相似文献   

14.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

15.
Diorganodiselenide [2-(Et2NCH2)C6H4]2Se2 (1) was obtained by hydrolysis/oxidation of the corresponding [2-(Et2NCH2)C6H4]SeLi derivative. The treatment of [2-(Et2NCH2)C6H4]2Se2 with elemental sodium in THF resulted in [2-(Et2NCH2)C6H4]SeNa (2). Reactions between alkali metal selenolates [2-(R2NCH2)C6H4]SeM′ (R = Me, Et; M′ = Li, Na) and MCl2 (M = Zn, Cd) in a 2:1 molar ratio resulted in the [2-(R2NCH2)C6H4Se]2M species [R = Me, M = Zn (3), Cd (4); R = Et, M = Zn (5), Cd (6)]. The new compounds were characterized by multinuclear NMR (1H, 13C, 77Se, 113Cd) and mass spectrometry. The crystal and molecular structures of 1, 3 and 4 revealed monomeric species stabilized by N → Se (for 1) and N → M (for 3 and 4) intramolecular interactions.  相似文献   

16.
The reactions of aqueous solutions of the tetrahedral cluster anions [Re4Q4(CN)12]4− (Q = S, Se) with lanthanide chlorides resulted in the crystallization of the formed compounds into two main structural types [{Ln(H2O)4(H2O)2/3Cl1/3}3{Re4Q4(CN)12}2]·2H2O (Ln = La-Gd, Q = S, Se) and K0.5(H)0.5[{Ln(H2O)4}{Re4S4(CN)12}]·nH2O or (H)[{Ln(H2O)4}{Re4Se4(CN)12}]·nH2O (Ln = Tb-Lu). Compounds of the first type crystallize in the hexagonal crystal system (space group Р63/m) and they have a three-dimensional polymeric structure; compounds of the second type crystallize in the orthorhombic crystal system (space group Cmcm) and they have a two-dimensional crystal structure due to the polymeric anion {[{Ln(H2O)4}{Re4Q4(CN)12}]}∞∞.  相似文献   

17.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

18.
Reaction of a trithiol ligand, 2-(mercaptomethyl)-2-methylpropane-1,3-dithiol (H3L), with tri-iron dodecacarbonyl in toluene produces two hexa-iron clusters (1 and 2). The two clusters are characterised crystallographically and spectroscopically. NMR spectroscopy reveals that the cluster 2 exists in two conformations in equilibrium 2anti ⇔ 2syn and the equilibrium constant Keq = 0.55 under CO atmosphere. In the cluster 2, the central {Fe2S2(CO)6} sub-unit is flanked by two identical {Fe2S2(CO)6} satellite sub-units through thiolate linkages whereas one of the thiolate linkages can further form Fe-S bond with the proximal Fe atom in one of the two satellite sub-units to produce the cluster 1 by expelling one CO. This conversion can be entirely reversed by continuously purging CO through the solution of the cluster 1. As suggested by DFT calculations, the conversion features a key step, the rotation of the Feprox(CO)3 to expose a vacant site for exogenic ligand binding (the S atom from the central sub-unit in this case) with concomitant switch for one of the three CO ligands in the unit of Feprox(CO)3 from terminal to bridging orientation. The conversion from the clusters 1-2 involving one CO uptake is much faster than its reverse process since the latter is an endergonic process characterised by large reaction barriers, as revealed by the DFT calculations.  相似文献   

19.
Nickel and copper complexes containing 1,3,5-benzenetricarboxylic acid, with a combination of selected N-donor ligands and Schiff bases, of the composition Ni3(bimz)6(btc)2 · 12H2O (1), Ni3(btz)9(btc)2 · 12H2O (2), Ni2(L1)(btc) · 7H2O (3), Ni3(L2)2(Hbtc) · 9H2O (4), Ni2(L3)(btc) · 4H2O (5), Cu2(L4)(btc) · 7H2O (6), [Cu3(pmdien)3(btc)](ClO4)3 · 6H2O (7) and [Cu3(mdpta)3(btc)](ClO4)3 · 4H2O (8); H3btc = 1,3,5-benzenetricarboxylic acid, bimz = benzimidazole, btz = 1,2,3-benztriazole, L1 = 2-[(phenylimino)methyl]phenol, L2 = N,N′-bis-(salicylidene)propylenediamine, L3 = 2-{[(2-nitrophenyl)methylene]amino}phenol, L4 = 2-[(4-methoxy-phenylimino)methyl]phenol, pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, mdpta = N,N-bis-(3-aminopropyl)methylamine, have been synthesized. The complexes have been studied by elemental analysis, IR, UV–Vis spectroscopies, magnetochemical and conductivity measurements and selected compounds also by thermal analysis. The crystal and molecular structure of complex 8 was solved. The complex is trinuclear with btc3−-bridge. The coordination polyhedron around each copper atom can be described as a distorted square with a CuON3 chromophore formed by one oxygen atom of carboxylate and three nitrogen atoms of mdpta. The magnetic properties of 8 have been studied in the 1.8–300 K temperature range revealing a very weak antiferromagnetic exchange interaction with J = −0.56 cm−1 for g = 2.13(9). The antimicrobial activities against selected strains of bacteria were evaluated. It was found that only complex 5 is able to inhibit the growth of Staphylococcus strains.  相似文献   

20.
Complexes [MHCpBz(CO)2(PR3)] (R = CH3, M = Mo (1); M = W (2); R = Ph, M = Mo (3); CpBz = C5(CH2Ph)5) were prepared by thermal decarbonylation of the corresponding [MHCpBz(CO)3] in the presence of trimethyl- or triphenyl-phosphine. In solution the NMR spectra of all compounds show the presence of cis and trans isomers that interconvert at room temperature. In the solid state the molecular structures obtained for compounds 1 and 2 correspond to the trans isomers, while for 3 the cis isomer is present.The electrochemistry of [MoHCpBz(CO)2(PMe3)] (1), [MoHCpBz(CO)3] (5), [WHCpBz(CO)3] (6), [WCpBz(CO)3]2 (7), and [MCpBz(CO)3(CH3CN)]BF4 (8), is described. The cleavage of M-H bonds takes place upon oxidation or reduction. Cations [MCpBz(CO)2L(CH3CN)]+ form in solvent-assisted M-H bond breaking upon oxidation of [MHCpBz(CO)2L] (L = PMe3, CO). Reduction of [MHCpBz(CO)3] gives [MCpBz(CO)3] and H2. The presence of one PMe3 ligand lowers the reduction potential and precludes the observation of reduction waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号