首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 937 毫秒
1.
选用自制中空纤维聚哌嗪酰胺复合纳滤膜对NaCl、Na2SO4、MgCl2及MgSO4溶液进行实验,考察了操作压力、pH、溶液浓度、溶液种类等因素对纳滤膜ζ电位及其分离性能的影响。结果表明:通量随压力增大成线性增大,截留率随压力增大而增大,最后趋于一个稳定值;pH可改变ζ电位的正负,截留率、通量随着pH的变化,均会出现最优值;随着溶液浓度增加,膜的ζ电位绝对值、截留率、通量均会有不同程度的下降。  相似文献   

2.
紫外辐照接枝制备亲水性荷正电纳滤膜   总被引:2,自引:0,他引:2  
曹绪芝  张明刚  平郑骅 《化学学报》2008,66(13):1583-1588
通过在酚酞基聚芳醚酮超滤膜表面紫外辐照接枝亲水性单体二烯丙基二甲基氯化铵(DADMAC)制备了一种表面荷正电的纳滤膜. ATR-FTIR和表面水接触角的研究结果表明膜表面的接枝率和亲水性随着辐照时间和单体在接枝溶液中的浓度的增加而增加. 荷正电纳滤膜对盐溶液有很好的截留, 对盐溶液中的高价阳离子和低价阳离子的截留率分别为95%和65%. 但当溶液中存在高价负离子时, 膜的截留性能会明显下降. 表明静电效应在荷电纳滤膜的分离过程中起了重要的作用.  相似文献   

3.
通过超支化聚酯(HPE)末端的羟基与戊二醛(GA)之间的羟醛缩合反应,采用简单的浸涂-交联方法,制备了一种以聚砜超滤膜为支撑层,交联的HPE为活性分离层的复合纳滤膜.采用衰减全反射红外光谱(ATR-FTIR)、接触角测定、扫描电子显微镜(SEM)对纳滤膜的表面化学组成、亲水性和膜形貌进行了表征.考察了HPE溶液浓度、GA溶液浓度对膜分离和渗透性能的影响,优化的HPE和GA溶液浓度分别为9.8 g/L和7.4 g/L,此时在0.4 MPa下膜的水通量达69.6 L/(m2.h),对Na2SO4脱除率为93.2%,表现出低操作压力、高通量、高脱盐率的优异性能.纳滤膜对无机盐的截留顺序为Na2SO4>NaCl>MgSO4>MgCl2,呈现明显的荷负电特征.  相似文献   

4.
《高分子学报》2021,52(5):505-513
二维纳米片构建的层状纳滤膜在工业染料和含盐废水的净化处理中显示出广泛的应用前景,但纳米片间松散的层状结构会影响过滤通道的稳定性,导致对盐类的截留效果不理想.本文以均苯三甲酰氯(TMC)交联单宁酸(TA)官能化的二硫化钼(MoS_2)纳米片构建薄层复合纳滤膜,以解决二维材料构建层状纳滤膜的常见问题.所制备的纳滤膜不仅对荷负电染料(伊文思蓝,分子量960.8)有很高的截留率(98.5%),也能很好地选择性分离染料-盐混合溶液(NaCl截留率15%).同时,该膜还能在严苛环境中保持优秀的稳定性.此外,在近红外光照射下,MoS2纳米片显著的光热转换效应赋予薄层复合纳滤膜一定的抗菌能力,使得该膜在实际应用中具有巨大潜力.  相似文献   

5.
UV辐照接枝聚合制备亲水性纳滤膜   总被引:5,自引:1,他引:4  
佘振  殷冠南  平郑骅 《化学学报》2006,64(19):2027-2032
用紫外光引发自由基共聚接枝的方法对酚酞基聚芳醚酮(PEK-C)超滤膜表面进行改性制备了亲水性荷电纳滤膜. 研究了用不同单体接枝改性膜对盐溶液的截留性能, 证明了Donnan电荷效应对纳滤膜分离性能的影响. 在此基础上, 通过丙烯酸(AA)与对苯乙烯磺酸钠(SSS)的共聚接枝, 并改变它们在接枝液中的相对含量, 成功地制备出膜的表观截留率和渗透通量都较高的纳滤膜.  相似文献   

6.
纳滤膜是一种新型分离膜,其截流分子量介于反渗透膜和超滤膜之间,且对无机盐有一定的截流率。国内外纳滤膜制备方法有L-S相转化法、复合法、荷电化法和无机改性等。纳滤膜研究中存在着膜通量小、膜制作成本较高及抗污染性差等问题,因此选择和制备纳滤膜的材料,优化纳滤技术水处理工艺设计,提高纳滤性能,降低制膜成本,减轻膜污染等已成为当今科学研究的重要课题。  相似文献   

7.
邱长泉  平郑骅  张力恒 《化学学报》2005,63(20):1906-1912
酚酞基聚芳醚酮(PEK-C)超滤膜的表面通过紫外辐照接枝丙烯酸(AA)可以制备对II价盐有很好截留率的亲水性纳滤膜. FTIR-ATR、表面接触角、SEM和AFM的研究结果表明, 在接枝单体溶液中加入异丙醇(i-PrOH)作为链转移剂并不影响AA在PEK-C超滤膜表面的接枝反应. 得到的改性膜同样具有优良的纳滤性能. 与不加i-PrOH的AA改性膜相比, 新合成的膜有较高的滤出液通量, 该膜对盐离子的截留率虽有所降低, 但可以通过增加接枝反应时间和辐照光源的强度来提高. i-PrOH的浓度对膜的分离性能的影响很大, 在低浓度时, 改性膜对离子的截留率会有所下降, 继续提高i-PrOH的浓度, 膜的截留率不再变化而滤出液通量会有成倍的增加, 表明链转移剂的存在可能会提高膜的接枝密度, 增加膜的表面电荷, 使膜对离子的截留率保持不变.  相似文献   

8.
采用流动电位法,用固体表面电位测定仪考察电解质溶液种类、浓度、p H对纳滤膜表面Zeta电位的影响。结果表明,二价离子溶液比一价离子溶液对纳滤膜表面Zeta电位作用明显,同价态离子的离子半径越小,Zeta电位越大;随着离子强度的增加,Zeta电位越小,在低离子浓度下Zeta电位值稳定性,重复性好;随着溶液p H的变化(3~10),纳滤膜的表面呈现两性性质,等电位点在p H 4.5~5.0之间。在测试纳滤膜表面Zeta电位时,推荐选择0.001mol/L的KCl电解质溶液。  相似文献   

9.
界面聚合法制备聚哌嗪酰胺复合纳滤膜   总被引:2,自引:1,他引:1  
以聚醚砜超滤膜为基膜,哌嗪(PIP)为水相单体,均苯三甲酰氯(TMC)为有机相单体,采用界面聚合法制备了复合纳滤膜,扫描电镜、表层的红外分析结果表明在基膜表面聚合了一层聚酰胺膜,膜性能测定结果表明膜表面荷负电,对不同无机盐的截留率为Na2SO4MgSO4MgCl2NaCl。界面聚合条件对膜性能的影响表明,最佳聚合条件为:PIP浓度0.5%~2%,TMC浓度0.15wt%~0.75wt%,聚合时间≥1min,热处理温度60℃~80℃,时间15 min左右。  相似文献   

10.
紫外辐照接枝制备亲水性两性纳滤膜   总被引:2,自引:0,他引:2  
吴嘉杰  唐晶欣  曹绪芝  平郑骅 《化学学报》2009,67(15):1791-1796
通过紫外辐照在酚酞基聚芳醚酮(PEK-C)超滤膜表面引发自由基共聚反应, 依次接枝二甲基二烯丙基氯化铵(DADMAC)和对苯乙烯磺酸钠(SSS), 制成亲水性、表面载有两种不同电荷的纳滤膜. 通过测定膜的纯水通量和对不同盐溶液表观截留率的变化, 系统研究了单体浓度和接枝时间对膜的分离性能的影响. 结果表明, 用这种方法制成的亲水性两性纳滤膜对盐溶液的截留作用与两种单体在接枝液中的浓度和接枝时间有关. 膜对由高价同离子和高价反离子组成的盐表现出优良的截留作用.  相似文献   

11.
A series of nanofiltration (NF) membranes were prepared with poly(amido-amine) (PAMAM) and trimesoyl chloride (TMC) via in situ interfacial polymerization.The effects of the generation number and concentration of PAMAM on the properties of NF membranes were discussed.Fourier transform infrared spectroscopy (FTIR-ATR),atomic force micrgscopy (AFM),scanning electron microscopy (SEM) and contact angle measurements were employed to characterize the resulting membranes.The nanofiltration performances were eva...  相似文献   

12.
Tangential streaming potential (TSP) measurements have been carried out so as to assess the electrokinetic properties of the active layer of organic nanofiltration (NF) membranes. Due to the porous structure of NF membranes, cares must be taken to convert the experimental data into zeta potential. Indeed, an assumption that is implicitly made in Smoluchowski's theory (or in related approaches accounting for the surface conduction phenomenon) is that both streaming and conduction currents involved in the streaming potential process flow through an identical path. Such an assumption does not hold with porous membranes since the conduction current is expected to flow wherever the electric conductivity differs from zero. Consequently, a non-negligible share of the conduction current is likely to flow through the membrane body filled with the electrolyte solution. This phenomenon has been taken into account by carrying out a series of TSP measurements at various channel heights. Experiments have been conducted with various electrolyte solutions. The inferred zeta potentials have been further converted into membrane volume charge densities which have been used to predict the membrane performances in terms of rejection rates. The conventional NF theory, i.e. based on a steric/Donnan exclusion mechanism, has been found to be unable to describe the experimental rejection rates. Using the volume charge density of the membrane as an adjustable parameter, it has been shown that the conventional theory even predicts the opposite sign for the membrane charge. On the other hand, the experimental rejection rates have been well described by including dielectric effects in the exclusion mechanism. In this case, a noticeable lowering of the effective dielectric constant of the electrolyte solution inside pores has been predicted (with respect to the bulk value).  相似文献   

13.
朱利平 《高分子科学》2012,30(2):152-163
Inspired by the self-polymerization and strong adhesion characteristics of dopamine in aqueous conditions,a novel hydrophilic nanofiltration(NF) membrane was fabricated by simply dipping polysulfone(PSf) ultrafiltration(UF) substrate in dopamine solution.The changes in surface chemical composition and morphology of membranes were determined by Fourier transform infrared spectroscopy(FTIR-ATR),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM) and atomic force microscopy(AFM).The experimental results indicated that the self-polymerized dopamine formed an ultrathin and defect-free barrier layer on the PSf UF membrane.The surface hydrophilicity of membranes was evaluated through water contact angle measurements.It was found that membrane hydrophilicity was significantly improved after coating a polydopamine(pDA) layer,especially after double coating.The dyes filtration experiments showed that the double-coated membranes were able to reject completely the dyes of brilliant blue,congo red and methyl orange with a pure water flux of 83.7 L/(m2·h) under 0.6 MPa.The zeta potential determination revealed the positively-charged characteristics of PSf/pDA composite membrane in NF process.The salt rejection of the membranes was characterized by 0.01 mmol/L of salts filtration experiment.It was demonstrated that the salts rejections followed the sequence:NaCl2SO4422,and the rejection to CaCl2 reached 68.7%.Moreover,the composite NF membranes showed a good stability in water-phase filtration process.  相似文献   

14.
Recent studies have shown that membrane surface morphology and structure influence permeability, rejection, and colloidal fouling behavior of reverse osmosis (RO) and nanofiltration (NF) membranes. This investigation attempts to identify the most influential membrane properties governing colloidal fouling rate of RO/NF membranes. Four aromatic polyamide thin-film composite membranes were characterized for physical surface morphology, surface chemical properties, surface zeta potential, and specific surface chemical structure. Membrane fouling data obtained in a laboratory-scale crossflow filtration unit were correlated to the measured membrane surface properties. Results show that colloidal fouling of RO and NF membranes is nearly perfectly correlated with membrane surface roughness, regardless of physical and chemical operating conditions. It is further demonstrated that atomic force microscope (AFM) images of fouled membranes yield valuable insights into the mechanisms governing colloidal fouling. At the initial stages of fouling, AFM images clearly show that more particles are deposited on rough membranes than on smooth membranes. Particles preferentially accumulate in the “valleys” of rough membranes, resulting in “valley clogging” which causes more severe flux decline than in smooth membranes.  相似文献   

15.
This paper aims to study the structure–property relationship and make several reasonable suggestions for tailoring special separation performance and surface properties of thin-film composite polyamide membranes. In the experiments, composite membranes of different thin films with small structural differences were prepared through interfacial polymerization of trimesoyl chloride (TMC), 5-isocyanato-isophthaloyl chloride (ICIC), and 5-chloroformyloxy-isophthaloyl chloride (CFIC) with m-phenylenediamine (MPD) separately, after which their reverse osmosis performances were evaluated by permeation experiment with salt aqueous solution, and film properties were characterized by AFM, SEM, XPS, ATR-IR, contact angle and streaming potential measurements. Chlorine stability was also studied through the evaluation of membrane performance before and after hypochlorite exposure. The results show that the polyacyl chloride structure strongly influences the reverse osmosis performance, surface properties and chlorine stability of the composite membranes; that the introduction of isocyanato group into polyacyl chloride improves the hydrophilicity, water permeability and surface smoothness of the thin-film composite membrane, and increases the absolute value of zeta potential at both low and high pH, but reduces the chlorine stability; and that the introduction of chloroformyloxy group increases the salt rejection rate and the surface roughness of the composite membrane, but lowers the water permeability.  相似文献   

16.
A novel thin-film composite (TFC) membrane for nanofiltration (NF) was developed by the interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC) on the polysulfone (PSf) supporting membrane. The active surface of the membrane was characterized by using FT-IR, XPS and SEM. The performance of TFC membrane was optimized by studying the preparation parameters, such as the reaction time of polymerization, pH of aqueous phase and the concentration of reactive monomers. It is found that the membrane performance is related to the changes of the monomer content in the aqueous phase rather than in the organic phase. Furthermore, the nanofiltration properties of the TFC membrane were tested by examining the separating performance of various salts at 0.6 MPa operating pressure. The rejection to different salt solutions decreased as per the order of Na2SO4 (82.2%), MgSO4 (76.5%), NaCl (42.2%) and MgCl2 (23%). Also, streaming potential tests indicated that isoelectric point of the TFC membrane is between pH 4 and 5. Moreover, the investigation of the flux for NaCl solution at different pH showed that the polyester NF composite membrane is also particularly suitable for treating acidic feeds: the flux increased from 8.4 to 11.5 L/m2 h when pH of the feed decreased from 9 to 3. Additionally, the TFC membrane exhibits good long-term stability.  相似文献   

17.
Novel nanofiltration (NF) membrane was developed from hydroxyl-ended hyperbranched polyester (HPE) and trimesoyl chloride (TMC) by in situ interfacial polymerization process using ultrafiltration polysulfone membrane as porous support. Fourier transform infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (CA) measurements were employed to characterize the resulting membranes. The results indicated that the crosslinked hyperbranched polyester produced a uniform, ultra-thin active layer atop polysulfone (PSf) membrane support. FTIR-ATR spectra indicated that TMC reacted sufficiently with HPE. Water permeability and salts rejection of the prepared NF membrane were measured under low trans-membrane pressures. The resulting NF membranes exhibited significantly enhanced water permeability while maintaining high rejection of salts. The salts rejection increase was accompanied with the flux decrease when TMC dosage was increased. The flux and rejection of NF 1 for Na2SO4 (1 g/L) reached to 79.1 l/m2 h and 85.4% under 0.3 MPa. The results encourage further exploration of NF membrane preparation using hyperbranched polymers (HBPs) as the selective ultra-thin layer.  相似文献   

18.
平流式流动电位测试系统的研制   总被引:1,自引:0,他引:1  
汪锰  吴礼光  莫剑雄  郑幸存  高从堦 《分析化学》2006,34(10):1507-1510
分离膜表面的荷电化显著地影响着膜的分离性能和耐污染能力。因此,定量化表征膜表面电性能具有重要的理论价值和实际意义。作者在前期透过式膜流动电位测试系统研发工作的基础上成功地研制了平流式流动电位测试系统,并且首次将恒电流法测膜体电导引入膜表面ζ(Zeta)电位的确定过程中。以自制不同共混比的合金荷电膜为测试对象,利用该测试系统和经典的Helmholtz-Smoluchowski(H-S)方程及其变体得到了不同pH下的膜表面Zeta电位,从而揭示了膜表面电导、膜体电导对膜表面Zeta电位的贡献,并展示了该流动电位测试系统的有效性。  相似文献   

19.
Transport of four metallic salts (CuCl2, ZnCl2, NiCl2 and CaCl2) through a polyamide nanofiltration (NF) membrane has been investigated experimentally from rejection rate and tangential streaming potential measurements. Rejection rates have been further analyzed by means of the steric, electric and dielectric exclusion (SEDE) homogeneous model with the effective dielectric constant of the solution inside pores as the single adjustable parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号