首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
常温下合成了2-(2-羟基-5-氯苯基)-1H-苯并咪唑荧光化合物和其二价铜离子的配合物,并对配合物的结构和稳定性进行了表征,用荧光光谱、质谱、红外光谱等研究了配合物与NO反应的机理.结果表明,该配合物与NO的反应具有高度的选择性,不受其他常见干扰分子的影响.配合物应用于脂多糖(LPS)激活的小鼠巨噬细胞中NO的测定,能够得到具有较好分辨率的荧光成像结果.  相似文献   

2.
建立了连续测定NO2-和NO3-的柱后在线衍生结合流动注射光度分析体系.阴离子交换柱(HPIC-AS3)分离水样中的NO2-和NO3-,洗脱液依次将NO2-和NO3-洗脱流经镀铜镉还原柱,NO3-在线还原为NO2-,与对氨基苯磺酸溶液和N-(1-萘基)-乙二胺溶液合并,在λmax=500 nm处对NO2-和NO3-产生的红色染料进行光度连续检测.NO2-和NO3-的线性范围分别为0.01~1.0mg/L和0.02~2.0 mg/L,检出限分别为0.004和0.008 ng/L.方法用于雨水、湖水和自来水中痕量NO2-和NO3-的同时连续测定.  相似文献   

3.
将钛酸丁酯作为Ti源,硝酸铈作为Ce源,硝酸钴作为Co源,采用溶胶-凝胶水热法制备出Ce-TiO_2和Ce-Co-TiO_2催化剂。对所制备的改性TiO_2催化剂进行BET、XRD、SEM、UV-vis、XPS、NH_3-TPD等表征分析测试,并以NO为研究对象对不同改性TiO_2催化剂进行了可见光催化实验,探究改性TiO_2催化剂脱除NO的效率。结果表明,以硝酸铈为Ce源(掺杂物质的量比1%),硝酸钴为Co源(掺杂物质的量比5%),在水热反应温度为160℃的条件下反应24 h后在200℃下煅烧得到的Ce(1%)-Co(5%)-TiO_2催化剂性能最好。其对浓度为762μg/m~3的NO可见光催化效率高达92.69%,在浓度提高至1148μg/m~3时在室温下的可见光催化效率仍可达85.94%,与纯TiO_2相比效率提高了近50%。而且Ce (1%)-Co (5%)-TiO_2催化剂的抗硫性能与连续使用次数都比商用催化剂(掺杂有V_2O_5的商用TiO_2)好。  相似文献   

4.
TiO2 *nH2 O凝胶预处理对水热合成SrTiO3 粉的影响   总被引:2,自引:0,他引:2  
以TiCl4为钛源, 首先制备TiO2 * nH2O凝胶, 然后在80℃的水热条件下制备了SrTiO3粉.利用X射线衍射(XRD)、透射电子显微镜(TEM)和红外光谱(FTIR)研究了TiO2 * nH2O凝胶水洗方式、阴离子(Cl-和NO3-)以及TiO2 * nH2O热处理对SrTiO3粉性能的影响.结果表明, 水洗和热处理都能使TiO2 * nH2O凝胶产生晶化; TiO2 * nH2O的晶化程度对产物SrTiO3颗粒的粒度和粒度分布有很大影响,以非晶质TiO2 * nH2O为钛源制备的SrTiO3颗粒粒度大且粒度分布宽.以结晶TiO2 * nH2O为钛源制备的SrTiO3颗粒粒度小且粒度分布窄,而且可以得到纳米颗粒.水热反应液相中存在Cl-或NO3-能使产物SrTiO3颗粒粒度稍有增大.综合以上结果, TiO2 * nH2O凝胶水洗对产物颗粒的影响主要是由于使凝胶产生了晶化,而由阴离子脱除产生的影响很小.因此,在不考虑阴离子对其它工程化影响(如设备腐蚀等)的前提下,可采用热处理代替水洗.  相似文献   

5.
报道了溶胶 凝胶 钴 邻菲口罗啉膜修饰电极的制备方法及其在一氧化氮(NO)检测中的应用,采用循环伏安法(CV)研究修饰电极的电化学特性,差示脉冲伏安法(DPV)对NO进行检测。该修饰电极对NO的电化学氧化具有很好的催化作用,使其氧化电位负移了210mV,氧化峰电流与NO浓度在5.6×10-8~2.8×10-5mol/L范围内呈良好的线性关系,相关系数r=0.999,检测限为1.4×10-8mol/L,且生物体内常见的干扰物质如抗坏血酸、NO2-和儿茶酚胺类神经递质的代谢物等不干扰测定。  相似文献   

6.
将配体L[2,5-二-(3,5-二甲基吡唑-4-巯基)-1,3,4-噻二唑]与Co(NO3)2 6H2O,Cd(NO3)2 4H2O和MnCl2 4H2O进行配位反应,得到三个配合物[Co(L)2(H2O)4](NO3)2 4(CH3CH2OH)(1),[Cd(L)2(H2O)4](NO3)2 4(CH3CH2OH)(2),[Mn(L)2(Cl)2(CH3OH)2]2(CH3OH)(3),并用元素分析,FT-IR和X射线单晶衍射进行了表征.分析结果表明,配体L呈"U"形,配合物1~3呈"S"形.配合物中Co(II),Cd(II),Mn(II)的配位环境均为扭曲八面体,每个金属离子同时和两个配体进行配位.配体和配合物体外抑菌活性研究结果表明,配体及其配合物都有一定的抑菌活性.  相似文献   

7.
富勒烯配合物η2-C60[Ru(NO)(PPh3)]2的合成与表征   总被引:4,自引:0,他引:4  
从1985年Kroto等[1]发现富勒烯至今, 其在化学、材料和物理等领域已有较多的研究[2~8]. 目前有关C60取代的金属小分子配合物(如羰基、亚硝酰基等)的研究方兴未艾. 而以NO为配体的亚硝酰基金属富勒烯配合物仅有数例[2,3], Green等[3]在研究以CO和NO为配体的金属富勒烯系列化合物的合成中, 认为C60不能与Ru(NO)2(PPh3)2发生反应. 本文利用Ru(NO)2(PPh3)2与C60反应首次合成出η2-C60[Ru(NO)(PPh3)]2配合物, 并对其进行了表征.  相似文献   

8.
探讨了显色剂 1 羟基 2 (5 NO2 2 吡啶偶氮 ) 8 氨基 3,6 萘二磺酸 (简称 5 NO2 PAH )与镍离子显色的适宜条件及其共存离子的影响 ,建立了 5 NO2 PAH测定镍的新显色体系。结果表明 ,在 pH 8.5~ 10 .0范围内 ,镍与试剂形成稳定的 1∶2配合物 ,其最大吸收峰位于 6 5 3nm ,表观摩尔吸光系数εNi=1.0 7× 10 5L·mol- 1·cm- 1,镍的浓度在 0~ 5 μg/ 10ml范围内遵守比耳定律。方法用于合金中镍的测定 ,结果满意。  相似文献   

9.
以Li2CO3为Mn源,采用醇水混合溶剂分散与中温固相反应法考察了Mn(NO3)2@6H2O,Mn(MeCO2)2@4H2O,MnCO3,化学MnO2(CMD)和电解MnO2(EMD)等不同Mn前驱物对制备Li1+xMn2-xO4尖晶石正极材料的电化学性能的影响,并采用XRD,BET,TEM等手段对材料进行了表征.结果表明,由不同Mn前驱物制备的正极材料均呈尖晶石结构,其容量大小和循环性能(依Mn源为顺序)为EMD>Mn(NO3)2@6H2O>MnCO3>Mn(MeCO)2@4H2O>CMD.材料呈立方晶体,比表面积(依Mn源为顺序)为CMD>MnCO3>Mn(NO3)2@6H2OMn(MeCO2)2@4H2O>EMD,正好与容量及稳定性顺序相反.采用本文的制备方法时,EMD和Mn(NO3)2@6H2O都是较好的Mn前驱物,Mn(MeCO2)2@4H2O和MnCO3也可以做Mn源,但焙烧时需要富氧气氛,CMD不适宜作Mn前驱物.  相似文献   

10.
用共沉淀法制备的复合氧化物MnOx-CeO2,其程序升温氧化(TPO)结果显示,1 000 mL.m-3NO和10%O2条件下MnOx-CeO2对应的碳烟起燃温度Ti为250~303℃,远低于无催化剂时的Ti(402℃)及CeO2的Ti(334℃);也低于无NO下MnOx-CeO2的Ti(346~360℃);与MnOx的Ti(290℃)相当,但MnOx-CeO2的Tm(413~441℃)仍比MnOx的Tm(441℃)稍低。明显地,NO促进了碳烟的氧化,MnOx-CeO2比CeO2和MnOx的活性都要高。NO-TPD、FT-IR及原位DRIFTs表明,MnOx-CeO2表面对NO吸附能力强,更易促进NO氧化和NOx储存,从而有利于碳烟的氧化。可能的机理为,富氧条件下气相O2推动催化剂中氧物种(如超氧O2-,化学弱吸附氧O-与晶格氧O2-)的形成(含相互转化)与迁移,推进了NO或NO2-的氧化;储存的NOx在低温下生成硝酸根离子,在高温时则释放出高活性的NO2*和O-,促进碳烟氧化,其中间产物包括C-NO2复合物与C(O)复合物。  相似文献   

11.
Base-catalysed hydrolysis of 2-formyl-3-methyl-1-phenyl-sulphonylindole results in the formation of 3-alkoxy-methyl-2-formylindoles. Cleavage of the 1-phenyl-sulphonyl group with sodium amalgam produces 2-hydroxymethyl-3-methylindole.  相似文献   

12.
根据稀土离子能级的特点,对Ga2O3-La2O3-Yb2O3-Er2O3(HO2O3)体系的光谱性质进行了探讨,发现它们有二类发光性质:Stokes发光和反Stokes发光,研究了发光强度和发射波长与掺杂离子的依赖关系,观察到由能量的共振转移引起的荧光浓度猝灭现象,并取得了最大发光强度时的掺杂离子浓度和一些规律性结果.  相似文献   

13.
Rate constants for the gas‐phase reactions of CH3OCH2CF3 (k1), CH3OCH3 (k2), CH3OCH2CH3 (k3), and CH3CH2OCH2CH3 (k4) with NO3 radicals were determined by means of a relative rate method at 298 K. NO3 radicals were prepared by thermal decomposition of N2O5 in a 700–750 Torr N2O5/NO2/NO3/air gas mixture in a 1‐m3 temperature‐controlled chamber. The measured rate constants at 298 K were k1 = (5.3 ± 0.9) × 10?18, k2 = (1.07 ± 0.10) × 10?16, k3 = (7.81 ± 0.36) × 10?16, and k4 = (2.80 ± 0.10) × 10?15 cm3 molecule?1 s?1. Potential energy surfaces for the NO3 radical reactions were computationally explored, and the rate constants of k1k5 were calculated according to the transition state theory. The calculated values of rate constants k1k4 were in reasonable agreement with the experimentally determined values. The calculated value of k5 was compared with the estimate (k5 < 5.3 × 10?21 cm3 molecule?1 s?1) derived from the correlation between the rate constants for reactions with NO3 radicals (k1k4) and the corresponding rate constants for reactions with OH radicals. We estimated the tropospheric lifetimes of CH3OCH2CF3 and CHF2CF2OCH2CF3 to be 240 and >2.4 × 105 years, respectively, with respect to reaction with NO3 radicals. The tropospheric lifetimes of these compounds are much shorter with respect to the OH reaction. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 490–497, 2009  相似文献   

14.
15.
16.
17.
18.
The reciprocal system 3Tl2S + Bi2Se3 ? 3Tl2Se + Bi2S3 has been investigated by DTA, X-ray powder diffraction analysis, and emf measurements. Some polythermal sections and the isothermal section at 500 K of the phase diagram and the projection of the liquidus surface of this system have been constructed, and the types and coordinates of the invariant and univariant equilibria have been determined. The existence of wide regions of quaternary solid solutions based on the binary compounds Tl2S, Tl2Se, Bi2S3, and Bi2Se3, and solid solutions between the temary compounds TlBiS2 and TlBiSe2 have been established.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号