首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The widely used CHARMM additive all‐atom force field includes parameters for proteins, nucleic acids, lipids, and carbohydrates. In the present article, an extension of the CHARMM force field to drug‐like molecules is presented. The resulting CHARMM General Force Field (CGenFF) covers a wide range of chemical groups present in biomolecules and drug‐like molecules, including a large number of heterocyclic scaffolds. The parametrization philosophy behind the force field focuses on quality at the expense of transferability, with the implementation concentrating on an extensible force field. Statistics related to the quality of the parametrization with a focus on experimental validation are presented. Additionally, the parametrization procedure, described fully in the present article in the context of the model systems, pyrrolidine, and 3‐phenoxymethylpyrrolidine will allow users to readily extend the force field to chemical groups that are not explicitly covered in the force field as well as add functional groups to and link together molecules already available in the force field. CGenFF thus makes it possible to perform “all‐CHARMM” simulations on drug‐target interactions thereby extending the utility of CHARMM force fields to medicinally relevant systems. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

2.
Presented is an extension of the CHARMM General Force Field (CGenFF) to enable the modeling of sulfonyl‐containing compounds. Model compounds containing chemical moieties such as sulfone, sulfonamide, sulfonate, and sulfamate were used as the basis for the parameter optimization. Targeting high‐level quantum mechanical and experimental crystal data, the new parameters were optimized in a hierarchical fashion designed to maintain compatibility with the remainder of the CHARMM additive force field. The optimized parameters satisfactorily reproduced equilibrium geometries, vibrational frequencies, interactions with water, gas phase dipole moments, and dihedral potential energy scans. Validation involved both crystalline and liquid phase calculations showing the newly developed parameters to satisfactorily reproduce experimental unit cell geometries, crystal intramolecular geometries, and pure solvent densities. The force field was subsequently applied to study conformational preference of a sulfonamide based peptide system. Good agreement with experimental IR/NMR data further validated the newly developed CGenFF parameters as a tool to investigate the dynamic behavior of sulfonyl groups in a biological environment. CGenFF now covers sulfonyl group containing moieties allowing for modeling and simulation of sulfonyl‐containing compounds in the context of biomolecular systems including compounds of medicinal interest. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Molecular mechanical force field (FF) methods are useful in studying condensed phase properties. They are complementary to experiment and can often go beyond experiment in atomic details. Even a FF is specific for studying structures, dynamics and functions of biomolecules, it is still important for the FF to accurately reproduce the experimental liquid properties of small molecules that represent the chemical moieties of biomolecules. Otherwise, the force field may not describe the structures and energies of macromolecules in aqueous solutions properly. In this work, we have carried out a systematic study to evaluate the General AMBER Force Field (GAFF) in studying densities and heats of vaporization for a large set of organic molecules that covers the most common chemical functional groups. The latest techniques, such as the particle mesh Ewald (PME) for calculating electrostatic energies, and Langevin dynamics for scaling temperatures, have been applied in the molecular dynamics (MD) simulations. For density, the average percent error (APE) of 71 organic compounds is 4.43% when compared to the experimental values. More encouragingly, the APE drops to 3.43% after the exclusion of two outliers and four other compounds for which the experimental densities have been measured with pressures higher than 1.0 atm. For heat of vaporization, several protocols have been investigated and the best one, P4/ntt0, achieves an average unsigned error (AUE) and a root-mean-square error (RMSE) of 0.93 and 1.20 kcal/mol, respectively. How to reduce the prediction errors through proper van der Waals (vdW) parameterization has been discussed. An encouraging finding in vdW parameterization is that both densities and heats of vaporization approach their "ideal" values in a synchronous fashion when vdW parameters are tuned. The following hydration free energy calculation using thermodynamic integration further justifies the vdW refinement. We conclude that simple vdW parameterization can significantly reduce the prediction errors. We believe that GAFF can greatly improve its performance in predicting liquid properties of organic molecules after a systematic vdW parameterization, which will be reported in a separate paper.  相似文献   

4.
Macrolides are an important class of antibiotics that target the bacterial ribosome. Computer simulations of macrolides are limited as specific force field parameters have not been previously developed for them. Here, we determine CHARMM‐compatible force field parameters for erythromycin, azithromycin, and telithromycin, using the force field toolkit (ffTK) plugin in VMD. Because of their large size, novel approaches for parametrizing them had to be developed. Two methods for determining partial atomic charges, from interactions with TIP3P water and from the electrostatic potential, as well as several approaches for fitting the dihedral parameters were tested. The performance of the different parameter sets was evaluated by molecular dynamics simulations of the macrolides in ribosome, with a distinct improvement in maintenance of key interactions observed after refinement of the initial parameters. Based on the results of the macrolide tests, recommended procedures for parametrizing very large molecules using ffTK are given. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Multipurpose atom‐typer for CHARMM (MATCH), an atom‐typing toolset for molecular mechanics force fields, was recently developed in our laboratory. Here, we assess the ability of MATCH‐generated parameters and partial atomic charges to reproduce experimental absolute hydration free energies for a series of 457 small neutral molecules in GBMV2, Generalized Born with a smooth SWitching (GBSW), and fast analytical continuum treatment of solvation (FACTS) implicit solvent models. The quality of hydration free energies associated with small molecule parameters obtained from ParamChem, SwissParam, and Antechamber are compared. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, these automated parameterization schemes with GBMV2 and GBSW demonstrate reasonable agreement with experimental hydration free energies (average unsigned errors of 0.9–1.5 kcal/mol and R2 of 0.63–0.87). GBMV2 and GBSW consistently provide slightly more accurate estimates than FACTS, whereas Antechamber parameters yield marginally more accurate estimates than the current generation of MATCH, ParamChem, and SwissParam parameterization strategies. Modeling with MATCH libraries that are derived from different CHARMM topology and parameter files highlights the importance of having sufficient coverage of chemical space within the underlying databases of these automated schemes and the benefit of targeting specific functional groups for parameterization efforts to maximize both the breadth and the depth of the parameterized space. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
7.
GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self‐assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle‐field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom‐up coarse‐graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle‐density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain‐growth polymerization model, by which the hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Accurate force-field (FF) parameters are key to reliable prediction of properties obtained from molecular modeling (MM) and molecular dynamics (MD) simulations. With ever-widening applicability of MD simulations, robust parameters need to be generated for a wider range of chemical species. The CHARMM General Force Field program (CGenFF, https://cgenff.umaryland.edu/ ) is a tool for obtaining initial parameters for a given small molecule based on analogy with the available CGenFF parameters. However, improvement of these parameters is often required and performing their optimization remains tedious and time consuming. In addition, tools for optimization of small molecule parameters in the context of the Drude polarizable FF are not yet available. To overcome these issues, the FFParam package has been designed to facilitate the parametrization process. The package includes a graphical user interface (GUI) created using Qt libraries. FFParam supports Gaussian and Psi4 for performing quantum mechanical calculations and CHARMM and OpenMM for MM calculations. A Monte Carlo simulated annealing (MCSA) algorithm has been implemented for automated fitting of partial atomic charge, atomic polarizabilities and Thole scale parameters. The LSFITPAR program is called for automated fitting of bonded parameters. Accordingly, FFParam provides all the features required for generation and analysis of CHARMM and Drude FF parameters for small molecules. FFParam-GUI includes a text editor, graph plotter, molecular visualization, and text to table converter to meet various requirements of the parametrization process. It is anticipated that FFParam will facilitate wider use of CGenFF as well as promote future use of the Drude polarizable FF.  相似文献   

9.
10.
Franck–Condon factors are investigated for sequences of free main‐group diatomic molecules. Theory‐based Condon loci (parabolas) and Morse‐potential loci are plotted on Deslandres tables to verify if they, indeed, follow the largest Franck–Condon factors. Then, the inclination angles of the Condon loci are determined. Thus, entire band systems are quantified by one variable, the angle. For all available isoelectronic sequences, this angle increases from a central minimum toward magic‐number molecular boundaries. The theory for the Condon locus gives the angle in terms of the ratio of the upper‐state to the lower‐state force constants. It is concluded that the periodicity is caused due to the fact that this ratio becomes larger as rare‐gas molecules are approached, a trend that probably points to the extreme cases of the rare‐gas molecules themselves. Thus, molecular periodicity echoes atomic periodicity in that data plots have extrema at molecules with magic‐number atoms, yet it does not echo the details of atomic periodicity in series between those molecules. © 2013 The Authors. International Journal of Quantum Chemistry Published by Wiley Periodicals, Inc.  相似文献   

11.
The reliability of molecular simulations largely depends on the quality of the empirical force field parameters. Force fields used in lipid simulations continue to be improved to enhance the agreement with experiments for a number of different properties. In this work, we have carried out molecular dynamics simulations of neat DMPC bilayers using united‐atom Berger force field and three versions of all‐atom CHARMM force fields. Three different systems consisting of 48, 72, and 96 lipids were studied. Both particle mesh Ewald (PME) and spherical cut‐off schemes were used to evaluate the long‐range electrostatic interactions. In total, 21 simulations were carried out and analyzed to find out the dependence of lipid properties on force fields, system size, and schemes to calculate long‐range interactions. The acyl chain order parameters calculated from Berger and the recent versions of CHARMM simulations have shown generally good agreement with the experimental results. However, both sets of force fields deviate significantly from the experimentally observed P‐C dipolar coupling values for the carbon atoms that link the choline and glycerol groups with the phosphate groups. Significant differences are also observed in several headgroup parameters between CHARMM and Berger simulations. Our results demonstrate that when changes were introduced to improve CHARMM force field using PME scheme, all the headgroup parameters have not been reoptimized. The headgroup properties are likely to play a significant role in lipid–lipid, protein–lipid, and ligand–lipid interactions and hence headgroup parameters in phospholipids require refinement for both Berger and CHARMM force fields. © 2009 Wiley Periodicals, Inc.J Comput Chem, 2010  相似文献   

12.
13.
Classical and ab initio, density functional theory‐ and semiempirical‐based molecular simulation, including molecular dynamics, have been carried out to compare and contrast the effect of explicit and implicit solvation representation of tetrahydrofuran (THF) solvent on the structural, energetic, and dynamical properties of a novel bifunctional arene ruthenium catalyst embedded therein. Particular scrutiny was afforded to hydrogen‐bonding and energetic interactions with the THF liquid. It was found that the presence of explicit THF solvent molecules is required to capture an accurate picture of the catalyst's structural properties, particularly in view of the importance of hydrogen bonding with the surrounding THF molecules. This has implications for accurate modeling of the reactivity of the catalyst. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Reading ligand structures into any simulation program is often nontrivial and time consuming, especially when the force field parameters and/or structure files of the corresponding molecules are not available. To address this problem, we have developed Ligand Reader & Modeler in CHARMM‐GUI. Users can upload ligand structure information in various forms (using PDB ID, ligand ID, SMILES, MOL/MOL2/SDF file, or PDB/mmCIF file), and the uploaded structure is displayed on a sketchpad for verification and further modification. Based on the displayed structure, Ligand Reader & Modeler generates the ligand force field parameters and necessary structure files by searching for the ligand in the CHARMM force field library or using the CHARMM general force field (CGenFF). In addition, users can define chemical substitution sites and draw substituents in each site on the sketchpad to generate a set of combinatorial structure files and corresponding force field parameters for throughput or alchemical free energy simulations. Finally, the output from Ligand Reader & Modeler can be used in other CHARMM‐GUI modules to build a protein‐ligand simulation system for all supported simulation programs, such as CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Ligand Reader & Modeler is available as a functional module of CHARMM‐GUI at http://www.charmm-gui.org/input/ligandrm . © 2017 Wiley Periodicals, Inc.  相似文献   

15.
To seek for high‐performance small molecule donor materials used in heterojunction solar cell, six acceptor–donor–acceptor small molecules based on naphtho[2,3‐b:6,7‐b′]dithiophene ( NDT ) units with different acceptor units were designed and characterized using density functional theory and time‐dependent density functional theory. Their geometries, electronic structures, photophysical, and charge transport properties have been scrutinized comparing with the reported donor material NDT(TDPP)2 ( TDPP = thiophene‐capped diketopyrrolopyrrole). The open circuit voltage (Voc), energetic driving force(ΔEL‐L), and exciton binding energy (Eb) were also provided to give an elementary understanding on their cell performance. The results reveal that the frontier molecular orbitals of 3–7 match well with the acceptor material PC61BM , and compounds 3–5 were found to exhibit the comparable performances to 1 and show promising potential in organic solar cells. In particular, comparing with 1 , system 7 with naphthobisthiadiazole acceptor unit displays broader absorption spectrum, higher Voc, lower Eb, and similar carrier mobility. An in‐depth insight into the nature of the involved excited states based on transition density matrix and charge density difference indicates that all S1 states are mainly intramolecular charge transfer states with the charge transfer from central NDT unit to bilateral acceptor units, and also imply that the exciton of 7 can be dissociated easily due to its large extent of the charge transfer. In a word, 7 maybe superior to 1 and may act as a promising donor candidate for organic solar cell. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
We introduce a toolset of program libraries collectively titled multipurpose atom-typer for CHARMM (MATCH) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion of multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges, and force field parameters are achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In this work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond charge increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM general force field (Vanommeslaeghe, et al., J Comput Chem 2010, 31, 671), one million molecules from the PubChem database of small molecules are typed, parameterized, and minimized.  相似文献   

17.
In this work, we have combined the polarizable force field based on the classical Drude oscillator with a continuum Poisson–Boltzmann/solvent‐accessible surface area (PB/SASA) model. In practice, the positions of the Drude particles experiencing the solvent reaction field arising from the fixed charges and induced polarization of the solute must be optimized in a self‐consistent manner. Here, we parameterized the model to reproduce experimental solvation free energies of a set of small molecules. The model reproduces well‐experimental solvation free energies of 70 molecules, yielding a root mean square difference of 0.8 kcal/mol versus 2.5 kcal/mol for the CHARMM36 additive force field. The polarization work associated with the solute transfer from the gas‐phase to the polar solvent, a term neglected in the framework of additive force fields, was found to make a large contribution to the total solvation free energy, comparable to the polar solute–solvent solvation contribution. The Drude PB/SASA also reproduces well the electronic polarization from the explicit solvent simulations of a small protein, BPTI. Model validation was based on comparisons with the experimental relative binding free energies of 371 single alanine mutations. With the Drude PB/SASA model the root mean square deviation between the predicted and experimental relative binding free energies is 3.35 kcal/mol, lower than 5.11 kcal/mol computed with the CHARMM36 additive force field. Overall, the results indicate that the main limitation of the Drude PB/SASA model is the inability of the SASA term to accurately capture non‐polar solvation effects. © 2018 Wiley Periodicals, Inc.  相似文献   

18.
We present a novel matrix representation of graphs based on the count of equal‐distance common vertices to each pair of vertices in a graph. The element (i, j) of this matrix is defined as the number of vertices at the same distance from vertices (i, j). As illustrated on smaller alkanes, these novel matrices are very sensitive to molecular branching and the distribution of vertices in a graph. In particular, we show that ordered row sums of these novel matrices can facilitate solving graph isomorphism for acyclic graphs. This has been illustrated on all undecane isomers C11H24 having the same path counts (total of 25 molecules), on pair of graphs on 18 vertices having the same distance degree sequences (Slater's graphs), as well as two graphs on 21 vertices having identical several topological indices derived from information on distances between vertices. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom‐type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats, treatment of electrostatic interactions, and system size (1000 molecules). The densities and enthalpy of vaporization from an independent data set based on simulations using the CHARMM General Force Field (CGenFF) presented by Vanommeslaeghe et al. (J. Comput. Chem.2010, 31, 671) are included for comparison. We find that, overall, the OPLS/AA force field performs somewhat better than GAFF, but there are significant issues with reproduction of the surface tension and dielectric constants for both force fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号