首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(pyridine‐3‐boronic acid) (PPBA)/multiwalled carbon nanotubes (MWCNTs) composite modified glassy carbon electrode (GCE) was used for the simultaneous determination of ascorbic acid (AA), 3,4‐dihydroxyphenylacetic acid (DOPAC) and uric acid (UA). The anodic peaks for AA, DOPAC and UA at the PPBA/MWCNTs/GCE were well resolved in phosphate buffer solution (pH 7.4). The electrooxidation of AA, DOPAC and UA in the mixture solution was investigated. The peak currents increase with their concentrations increasing. The detection limits (S/N=3) of AA, DOPAC and UA are 5 µM, 3 µM and 0.6 µM, respectively.  相似文献   

2.
In this paper electropolymerization of a thin film of para‐phenylenediamine (PPD) is studied at glassy carbon electrode (GCE) in sulfuric acid media by cyclic voltammetry. The results showed that this polymer was conducting and had a reproducible redox couple in the potential region from 0.0 to 0.4 V in phosphate buffer solution. This modified GCE (p‐PPD‐GCE) was applied for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) using differential pulse voltammetry (DPV). The p‐PPD‐GCE in 0.1 M phosphate buffer solution (pH 5.0) separated the DPV signals of AA, DA and UA with sufficient potential differences between AA–DA and DA–UA and also enhanced their oxidation peak currents. The oxidation currents were increased from 2.0 to 2000.0 µM for AA, 10.0 to 1250.0 µM for DA and 50.0 to 1600.0 µM for UA. The detection limits were evaluated as 0.4, 1.0 and 2.5 µM for AA, DA and UA, respectively (S/N=3).  相似文献   

3.
Teresa Łuczak 《Electroanalysis》2010,22(22):2641-2649
Gold electrodes modified with S‐containing compounds and gold were used for determination of norepinephrine (NEP) in aqueous solution. A linear relationship between norepinephrine concentration and current response was obtained in the range of 0.1 µM to 600 µM with the detection limit ≤0.090 µM for the electrodes modified at 2D template and in the range of 0.1 µM to 700 µM with the detection limit ≤0.075 µM for the electrodes modified at 3D template. The results have shown that modified electrodes could clearly resolve the oxidation peaks of norepinephrine, ascorbic (AA) and uric acid (UA) with peak‐to‐peak separation enabling determination of NEP, AA and UA in the presence of each other.  相似文献   

4.
A glassy carbon electrode modified with carbon nanotube and bimetallic inorganic‐organic nanofiber hybrid nanocomposite was prepared and used for determination of trace levels of guaifenesin. A modified glassy carbon electrode was developed for the rapid, selective, sensitive and low cost monitoring of guaifenesin. Oxidation of guaifenesin on the surface of the modified electrode was investigated with differential pulse voltammetry and the results showed that the modified electrode remarkably improved sensitivity and selectivity for the electrochemical assay of guaifenesin. Detection limit and quantitation limit were found to be 0.0175 µM and 0.0583 µM, respectively.  相似文献   

5.
A multiwalled carbon nanotube/chitosan modified glassy carbon electrode (MWCNTs‐CHT/GCE) has been used for simultaneous determination of paracetamol (PAR) and uric acid (UA). The measurements were carried out using differential pulse voltammetry (DPV), cyclic voltammetry (CV) and chronoamperometry (CA). DPV measurements showed a linear relationship between oxidation peak current and concentration of PAR and UA in phosphate buffer (pH 7) over the concentration range 2 µM to 250 µM, and 10 µM to 400 µM, respectively. The analytical performance of this sensor has been evaluated for detection of PAR and UA in human serum and human urine with satisfactory results.  相似文献   

6.
《Analytical letters》2012,45(1):186-196
In the present paper, the use of a carbon paste electrode modified by ferrocene monocarboxylic acid (FMC) and carbon nanotubes prepared by a simple and rapid method was described. The modified electrode showed an excellent character for electrocatalytic oxidization of phenylhydrazine (PHZ) and hydrazine (HZ) with a 300 mV separation of both peaks. Differential pulse voltammetric peak currents of PHZ and HZ increased linearly with their concentrations at the range of 0.8 µM to 700 µM and 16 µM to 800 µM and the detection limits (3σ) were determined to be 0.42 µM and 14 µM, respectively.  相似文献   

7.
A glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNTs) and a hydrophobic ionic liquid (IL), was used for the simultaneous voltammetric determination of theophylline (TP) and guaifenesin (GF). The results showed that the oxidations of TP and GF were facilitated at modified electrode and peak‐to‐peak separation at MWCNT? IL/GCE (252 mV) was larger than that observed at unmodified GCE (165 mV). Voltammetric signals for TP and GF exhibited linear ranges of 0.5 to 98.0 µM (R2>0.99) and 1.5 to 480.0 µM (R2>0.99), respectively. The method was used to estimate TP and GF contents in some real samples.  相似文献   

8.
Acrylamide (AA) was electrochemically detected and quantified by means of its voltammetric response on carboxylic modified Single‐Walled Carbon Nanotube Screen Printed Electrodes (COOH‐SWCNT‐SPEs). The electroreduction signal of AA was proportional to AA concentration at low values (below 300 µM) and the observed sensitivity was explained in terms of AA adsorption on the COOH‐SWCNT‐SPEs that was demonstrated using the electrochemical response of [Fe(CN)6]3? and [Fe(CN)6]4? and Raman spectroscopy experiments. In order to test the suggested analytic approach (LOD of 0.03 µM, LOQ of 0.04 µM), detection and quantification of AA in fried potatoes was carried out using the proposed electrochemical method and HPLC. Both techniques showed similar contents of AA.  相似文献   

9.
A composition of multiwalled carbon nanotube (MWCNT), Nafion and cobalt(II)‐5‐nitrosalophen (CoNSal) is applied for the modification of carbon‐paste electrode (CPE). The pretreated MWCNT is well dispersed in the alcoholic solution of Nafion under the ultrasonic agitation, and the resulted suspension is used as modifier (with 10% w/w) in the matrix of the paste electrode. The prepared electrode further modified by addition of 3 wt% of CoNSal. The resulted modified electrode is used as a sensitive voltammetric sensor for simultaneous determination of uric acid (UA) and ascorbic acid (AA). The electrode showed efficient electrocatalytic activity in lowering the anodic overpotentials and enhancement of the anodic currents. This electrode is able to completely resolve the voltammetric response of UA and AA. The effects of potential sweep rate and pH of the buffer solution on the response of the electrode, toward UA and AA, and the peak resolution is thoroughly investigated by cyclic and differential pulse voltammetry (CV and DPV). The best peak resolution for these compounds using the modified electrode is obtained in solutions with pH 4. The ΔEp for UA and AA in these methods is about 315 mV, which is considerably better than previous reports for these compounds. A linear dynamic range of 1×10?7 to 1×10?4 M with a detection limit of 6×10?8 M is resulted for UA in buffered solutions with pH 4.0. The voltammetric response characteristics for AA are obtained as, the linear range of 5×10?7 to 1×10?4 M with the detection limit of 1×10?7 M. The voltammetric detection system was very stable and the reproducibility of the electrode response, based on the six measurements during one month, was less than 3.5% for the slope of the calibration curves of UA and AA. The prepared modified electrode is successfully applied for the determination of AA and UA in mixture samples and reasonable accuracies are resulted.  相似文献   

10.
Electrocatalysis of the oxidation of formaldehyde on silver‐palladium‐modified carbon ionic liquid electrode (AgPd/CILE) was investigated in 0.1 M NaOH. The electrochemical performance of the AgPd/CILE was compared with those of Pd/CILE and Ag/CILE. Ag plays an important role in the catalytic performance of AgPd nanocatalyst and yields an excellent antifouling effect. Amperometric measurements showed that AgPd/CILE is a promising sensor for the detection of formaldehyde in the range of 10.0 µM–70.0 mM with a sensitivity of 240.6 µA mM?1 cm?2 and a detection limit of 2 µM. The method is free from interference of methanol, ethanol and formic acid.  相似文献   

11.
A new method to modify electrodes with carbon nanotubes (CNT) was developed. Multiwalled carbon nanotubes (MWNT) were adsorbed on the electrospun nylon‐6 nanofibrous membranes (Ny‐6‐NFM) and used as a coating to modify conventional glassy carbon electrodes. The modified electrode was designed for the amperometric detection of sulfhydryl compounds with the potential held at +0.3 V vs. Ag/AgCl. The modified electrode showed a linear response for cysteine up to 0.4 mM (R2=0.997), with a sensitivity of 5.1 µA/mM and a detection limit of 15 µM. Other sulfhydryl compounds showed similar results. After use, the Ny‐6‐NFM was easily peeled off, leaving the bare electrode surface back to its original electrochemical behaviour. This is the first attempt to use a disposable membrane functionalized with MWNT for electroanalytical purposes.  相似文献   

12.
A sensitive dopamine sensor was constructed based on the modified carbon paste electrode with methylthiouracil as a nucleophile in the 1,4‐Michael addition reaction. An ECE mechanism was suggested for dopamine oxidation at the modified electrode. Design of experiments was used in the optimization of variables. Under the optimum conditions, calibration graph was linear in the range of 0.20–15.0 µM with a detection limit of 73 nM. The relative standard deviations (n=5) for 0.50 µM of dopamine was 3.83 %. The selectivity of the sensor was also studied. The developed sensor was applied for analysis of pharmaceutical and biological samples.  相似文献   

13.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

14.
《Analytical letters》2012,45(9):1785-1799
Abstract

Multiwalled carbon nanotubes (MWNTs) were treated with a mixture of concentrated sulfuric and nitric acid to introduce carboxylic acid groups to the nanotubes. Conducting polymer film was prepared by electrochemical polymerization of neutral red (NR). By using a layer‐by‐layer method, homogeneous and stable MWNTs and poly (neutral red) (PNR) multilayer films were alternately assembled on glassy carbon (GC) electrodes. With the introduction of PNR, the MWNTs/PNR multilayer film system showed synergy between the MWNTs and PNR, with a significant improvement of redox activity due to the excellent electron‐transfer ability of carbon nanotubes (CNTs) and PNR. The electropolymerization is advantageous, providing both prolonged long‐term stability and improved catalytic activity of the resulting modified electrodes. The MWNTs/PNR multilayer film modified glassy carbon electrode allows low potential detection of hydrogen peroxide with high sensitivity and fast response time. As compared to MWNTs and PNR‐modified GC electrodes, the magnitude of the amperometric response of the MWNTs/PNR composite‐modified GC electrode is more than three‐fold greater than that of the MWNTs modified GC electrode, and nine‐fold greater than that of the PNR‐modified GC electrode. With the immobilization of glucose oxidase onto the electrode surface using glutaric dialdehyde, a biosensor that responds sensitively to glucose has been constructed. In pH 6.98 phosphate buffer, nearly interference‐free determination of glucose has been realized at ?0.2 V vs. SCE with a linear range from 50 µM to 10 mM and response time <10s. The detection limit was 10 µM glucose (S/N=3).  相似文献   

15.
《Analytical letters》2012,45(1):134-145
The electrochemical behavior of indomethacin on the surface of a carbon-ceramic electrode modified with multi-walled carbon nanotubes and an ionic liquid composite film is reported. The results show that the nano-structured film exhibited excellent enhancement effects on the electrochemical oxidation of indomethacin. The developed sensor presented a linear response to indomethacin over the concentration range from 1 to 50 µM with a detection limit of 0.26 µM. The proposed modified electrode was employed for the determination of indomethacin in biological and pharmaceutical samples using differential pulse voltammetry.  相似文献   

16.
《Analytical letters》2012,45(5):913-926
Abstract

A new nanocomposite was developed by combination of prussian blue (PB) nanoparticles and multiwalled carbon nanotubes (MWNTs) in the matrix of biopolymer chitosan (CHIT). The PB and MWNTs had a synergistic electrocatalytic effect toward the reduction of hydrogen peroxide. The CHIT/MWNTs/PB nanocomposite‐modified glassy carbon (GC) electrode could amplify the reduction current of hydrogen peroxide by ~35 times compared with that of CHIT/MWNTs/GC electrode and reduce the response time from ~60 s for CHIT/PB/GC to 3 s. Besides, the CHIT/MWNTs/PB nanocomposite‐modified GC electrode could reduce hydrogen peroxide at a much lower applied potential and inhibit the responses of interferents such as ascorbic acid (AA) uric acid (UA) and acetaminophen (AC). With glucose oxidase (GOx) as an enzyme model, a new glucose biosensor was fabricated. The biosensor exhibited excellent sensitivity (the detection limit is down to 2.5 µM), fast response time (less than 5 s), wide linear range (from 4 µM to 2 mM), and good selection.  相似文献   

17.
Electrochemical monitoring of DNA hybridization related to p53 gene sequence was investigated using genomagnetic assay combined with single walled carbon nanotube (SWCNT) modified pencil graphite electrodes (PGEs). The hybridization was performed either at magnetic beads (MB) surface or in solution. The enhanced guanine signal was obtained using SWCNT‐PGEs compared to one obtained by unmodified PGEs. The selectivity of genomagnetic assay was tested under optimum conditions. The DLs were calculated as 0.88 µM and 0.11 µM for hybridization performed at MB surface and solution, respectively. This selective, practical and cost effective genomagnetic assay combined with SWCNT‐PGEs is reported herein for the first time.  相似文献   

18.
A glassy carbon electrode modified with per‐6‐amino‐β‐cyclodextrin (β‐CDNH2) and functionalized single‐walled carbon nanotubes (SWCNT‐COOH) was elaborated. This structure was investigated for the detection of dopamine acid (DA) in presence of ascorbic acid (AA). The sensor behavior was studied by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The analysis results show that the electrode modification with CD derivative improves the sensitivity and selectivity of the DA recognition; the electrochemical response was further improved by introduction of SWCNT‐COOH. The sensor shows good and reversible linear response toward DA within the concentration range of 7×10?7–10?4 M with a detection limit of 5×10?7 M.  相似文献   

19.
An ascorbic acid (AA) amperometric sensor was fabricated based on a glassy carbon electrode (GCE) modified with a reduced graphene oxide-wrapped hierarchical TiO2 (RGO—TiO2) nanocomposite. The RGO—TiO2 nanocomposite was synthesized via the facial wet chemical method and characterized by scanning electron microscopy and X-ray diffraction. Cyclic voltammetry and amperometric techniques were employed to investigate its electrocatalytic performance towards the AA oxidation. The combined advantages of RGO and TiO2 provide the electrode with higher current response and lower oxidation potential compared with those of bare GCE and TiO2 modified GCE. The proposed electrode can be used for the determination of AA in the wide concentration range from 1 to 1500 µM with the detection limit of 0.5 µM. The proposed electrode was successfully used to determine AA in vitamin C tablets and spiked fruit juice.  相似文献   

20.
A novel electrochemical device for the sensitive determination of dopamine was developed based on a carbon paste electrode with polymeric ferric sulfate doped in the carbon paste and a carboxyl-functionalized carbon nanotube thin film on the surface. The modified electrode was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The conditions for the preparation of electrode were optimized. The carbon nanotubes were shown to be stable on the surface of carbon paste electrode. The novel electrochemical device provided excellent activity toward dopamine. Amperometry and differential pulse voltammetry were used for the determination of dopamine in pH 7.0 phosphate buffer with a long linear range from 0.8 to 261?µM and a detection limit of 0.2?µM. The modified electrode showed excellent repeatability, good stability, and satisfactory reproducibility, thus demonstrating potential for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号