首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-氰基肉桂酸乙酯作为含多种官能团的缺电子烯烃, 是一种极具应用价值的有机合成反应底物, 主要通过催化Knoevenagel缩合反应获得. 本文以多聚甲醛和三聚氰胺为前驱体, 采用溶剂热法制备富氮多孔有机聚合物mPMF, 经K2CO3处理得到K2CO3-mPMF-X(X=1, 10, 50). 考察了mPMF在苯甲醛和氰乙酸乙酯Knoevenagel缩合反应中的催化性能, 通过mPMF与K2CO3-mPMF-X催化活性的比较, 探讨了碱性强弱对Knoevenagel缩合反应的影响, 并对催化反应机理进行了探索. 结果表明, 催化剂中丰富的氮物种为反应提供了碱性环境和大量的碱性活性位点, 催化剂碱性强弱的控制是催化合成α-氰基肉桂酸乙酯的关键因素. mPMF在甲醇溶剂中于60 ℃反应3 h后, 苯甲醛转化率为97%, 目标产物选择性在99.9%以上.  相似文献   

2.
A metal‐free three‐component reaction to synthesize 1,4,5‐trisubstituted 1,2,3‐triazoles from readily available building blocks, such as aldehydes, nitroalkanes, and organic azides, is described. The process is enabled by an organocatalyzed Knoevenagel condensation of the formyl group with the nitro compound, which is followed by the 1,3‐dipolar cycloaddition of the azide to the activated alkene. The reaction features an excellent substrate scope, and the products are obtained with high yield and regioselectivity. This method can be utilized for the synthesis of fused triazole heterocycles and materials with several triazole moieties.  相似文献   

3.
Polycarbosilane (PCS) was synthesized by the polycondensation of trichloromethylsilane and trimethoxyvinylsilane in the presence of sodium metal. PCS has a highly crosslinked structure, high ceramic yield and high surface area. Titanium metal ion was attached to the polycarbosilane and its catalytic activity was investigated. The Knoevenagel condensation reaction catalysed by titanium‐incorporated polycarbosilane is reported. The titanium‐incorporated PCS catalysed the reaction well and with a diverse set of substrates the reaction proceeded with good yield. PCS‐supported transition metal catalysts have been prepared for the first time and used successfully in the Knoevenagel condensation reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Knoevenagel condensations are especially important reactions for the synthesis of alkene compounds having electron-withdrawing groups such as COR,CN,COOR,NO2 etc. Recently, transition metal hydride ruthenium1, hydride and polyhydride rhenium2, and polyhydride iridium complexes have been found to be the efficient catalysts for Knoevenagle condensation. However the mentioned-above transition metal hydride complexes are not easily prepared. In addition, all of them are oxygen and H2O-sensit…  相似文献   

5.
A simple and efficient Knoevenagel condensation method for the synthesis of trisubstituted electrophilic alkenes was developed using lipase as a biocatalyst. Knoevenagel condensation was performed using the conventional method and using lipases (Aspergillus oryzae or Rhizopus oryzae) as biocatalysts, and reaction time, reaction temperature, yield, and recyclability were compared. Using a lipase as a biocatalyst eliminated the need for bases such as piperidine and pyridine. A wide range of aromatic aldehydes and ketones readily undergo condensation with active methylene compounds. The workup procedure is also very simple, and yields of the reactions are in the range of 75% to 95%. Both the biocatalysts were effectively recycled four times with no major decrease in the yield of product. The remarkable catalytic activity and reusability of lipase widens its applicability in Knoevenagel condensation with good to excellent yields for synthesis of trisubstituted electrophilic alkenes.  相似文献   

6.
In this paper, guanidine groups (Gn) supported on modified magnetic nanoparticles (Fe3O4–4,4′‐MDI) were synthesized for the first time. The catalyst synthesized was characterized by various techniques such as SEM (Scanning Electron Microscopy), TEM (Transmission electron microscopy), XRD ( X‐ray Diffraction ), TGA (Thermogravimetric ananlysis), EDS ( Energy‐dispersive X‐ray spectroscopy ) and VSM (vibrating sample magnetometer). The catalyst activity of modified MNPs–MDI‐Gn, as powerful basic nanocatalyst, was probed through the Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation reactions. Conversion was high under optimal conditions, and reaction time was remarkably shortened. This nanocatalyst could simply be separated and recovered from the reaction mixture by simple magnetic decantation and reused many times without significant loss of its catalytic activity. Also, the nanocatalyst could be recycled for at least seven (Knoevenagel condensation) and six (Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation) additional cycles after they were separated by magnetic decantation and, washed with ethanol, air‐dried, and immediately reused.  相似文献   

7.
Fe3O4 magnetic nanoparticles (MNPs) were obtained using a reduction–precipitation method. These MNPs were modified with cysteamine hydrochloride. This catalyst was characterized using a number of physicochemical measurements. The Fe3O4–cysteamine MNPs, as an efficient and heterogeneous catalyst, were successfully used for Knoevenagel condensation under mild conditions. The activity of this nanomagnetic catalyst in the Knoevenagel condensation of aromatic aldehydes and malononitrile is described. Easy preparation of the catalyst, easy work‐up procedure, excellent yields and short reaction times are some of the advantages.  相似文献   

8.
通过活性炭(AC)负载壳聚糖(CS)的方法,制备了负载型的"壳聚糖/活性炭"催化剂(CS/AC)。利用FT-IR、XRD、TG-DTG、SEM、BET、元素分析等方法对催化剂进行表征,并系统研究了该催化剂在Knoevenagel缩合反应中的催化性能。结果表明,催化剂具有较好的活性,在室温无溶剂条件下,可以催化一系列芳香醛化合物与活泼亚甲基化合物进行缩合反应,产率均在80%以上;且反应体系放大100倍时,仍然保持较高的催化效率;此外,该催化剂具有较好稳定性,重复使用8次后,仍然保持较高的催化活性。  相似文献   

9.
The amine‐ and diamine‐functionalized mesoporous carbons with hexagonal mesostructure have been prepared by a rationally two‐step modification procedure under mild reaction conditions, respectively. The physicochemical properties of the obtained solid basic mesoporous catalysts were characterized by XRD, TEM, N2 adsorption‐desorption, FT‐IR, EDX and elemental analysis techniques. The results indicated the organic amine groups were successfully introduced inside the channels of mesoporous carbons without destroying the well‐ordered 2D hexagonal mesostructure. A series of Knoevenagel condensation of aldehyde/ketone with active methylene compounds have been carried out over the diamine‐function‐ alized mesoporous carbons, which proved to be efficient heterogeneous basic catalysts and exhibited a similar catalytic activity after sixth cycles. This can be attributed to its hydrophobic framework and hydrophilic diamine groups, which led to amphiphilic properties and offered some advantages for the Knoevenagel condensation reactions.  相似文献   

10.
离子液体中微波促进的Knoevenagel缩合反应   总被引:8,自引:1,他引:8  
邵国强 《合成化学》2003,11(5):440-442
以离子液体1-丁基3-甲基咪唑四氟硼酸盐为反应溶剂,氨基乙酸为催化剂,在微波辐射下,醛和活泼亚甲基类化合物发生的Knoevenagel缩合反应速度能被极大地提高,8种缩合产物被快速高收率地合成。  相似文献   

11.
Rong Yao  Eryan Xia  Jing Sun  Chaoguo Yan 《中国化学》2011,29(11):2461-2464
The polysubstituted thiophene derivatives were conveniently prepared by the four‐component reactions of 1,3‐thiazolidinedione, aromatic aldehydes, cyanoacetamide and cyclic secondary amines such as pyrrolidine, morpholine and piperidine. The reaction mechanism is believed to involve domino reactions of Knoevenagel condensation, Michael addition, ring‐opening and recyclization of 1,3‐thiazolidinedione.  相似文献   

12.
A convenient one‐pot microwave‐assisted synthesis of Benzopyrano[2,3‐c]pyrazol‐3‐one derivatives was developed, where Knoevenagel condensation and hydrazinolysis reactions were continuously performed under microwave irradiation without separation and purification of the intermediates until the last cyclocondensation reaction except the substrates addition. The one‐pot procedure exhibited shorter reaction times and higher yields (25–55%) of the objects than the conventional heating method.  相似文献   

13.
Bifunctional acid–base ionic liquid organocatalysts with different distances between the two sites have been synthesised, and their activity for the Knoevenagel condensation has been tested. As has been found to be the case with enzymes, the distance between the acidic and basic sites determines the activity of the bifunctional organocatalyst, and at the optimal distance the reaction rate increases by two orders of magnitude with respect to the purely acidic or basic counterpart organocatalysts. The experimental results have been rationalised through the study of the reaction mechanism of the Knoevenagel condensation between malononitrile and benzaldehyde by means of DFT calculations. It has been found that it consists of two consecutive steps. First, deprotonation of malononitrile on the basic site to obtain a methylene carbanion intermediate takes place, and second, co‐adsorption and activation of benzaldehyde on the acid centre of this intermediate followed by the C? C bond‐formation reaction. The calculations and the kinetic study indicate that there is an inversion of the rate‐controlling step when the distance between the acidic and the basic sites is modified, with a direct implication on the reaction rate.  相似文献   

14.
Recently, acid–base bifunctional catalysts have been considered due to their abilities, such as the simultaneous activation of electrophilic and nucleophilic species and their high importance in organic syntheses. However, the synthesis of acid–base catalysts is problematic due to the neutralization of acidic and basic groups. This work reports a facial approach to solve this problem via the synthesis of a novel bifunctional polymer using inexpensive materials and easy methods. In this way, at the first step, heterogeneous poly (styrene sulfonic acid‐n‐vinylimidazole) containing pentaerythritol tetra‐(3‐mercaptopropionate) (PETMP) and trimethylolpropane trimethacrylate (TMPTMA) cross‐linkers were synthesized in the pores of a mesoporous silica structure using click reaction as a novel bifunctional acid–base catalyst. After that, Ni‐Pd nanoparticles supported on poly (styrenesulfonic acid‐n‐vinylimidazole)/KIT‐6 as a novel trifunctional heterogeneous acid–base‐metal catalyst was prepared. The prepared catalysts were characterized by various techniques like FT‐IR, TGA, ICP‐AES, DRS‐UV, TEM, FE‐SEM, EDS‐Mapping, and XRD. The synthesized catalysts were efficiently used as bifunctional/trifunctional catalysts for one‐pot, deacetalization‐Knoevenagel condensation and one‐pot, three‐step and a sequential reaction containing deacetalization‐Knoevenagel condensation‐reduction reaction. It is important to note that the synthesized catalyst showing high chemo‐selectivity for the reduction of nitro group, alkenyl double bond and ester group in the presence of nitrile. Moreover, it was found that the different nanoparticles including Ni, Pd, and alloyed Ni‐Pd showing different chemo‐selectivity and catalytic activity in the reaction.  相似文献   

15.
A versatile and efficient single‐step route to 3‐cyanocoumarins via Knoevenagel condensation of salicylaldehydes and malononitrile using ZrCl4 as the catalyst (15 mol %) in ionic liquid 1‐(n‐butyl)‐3‐methylimidazolium tetrafluoroborate as reaction medium and catalyst is described. The novel procedure features single step, short reaction time, good yields, and simple workup. J. Heterocyclic Chem., (2011).  相似文献   

16.
A series of 4‐pyrazolylmethylene‐3‐phenylisoxazol‐5(4H )‐ones have been prepared from Knoevenagel condensation of pyrazole‐4‐carbaxaldehyde with isoxazolone precursors or via one‐pot three‐component cyclocondensation of pyrazole‐4‐carbaxaldehyde with β‐ketoesters and hydroxylamine hydrochloride in the presence of sodium benzoate in water under the influence of ultrasonic waves. The merits of this method are efficient, clean, green, easy work‐up, high yields, and shorter reaction time, and the catalyst could be recycled easily without affecting the catalytic activity.  相似文献   

17.
A family of gyroidal metal–organic frameworks (STUs) composited with transition metal ions and bi‐imidazolate ligands (BIm) were prepared and applied as both Lewis base and acid catalysts. Benefiting from the intrinsic basicity of the ligands and the Lewis acidic sites of the open metal centres, the STUs materials show excellent catalytic activities as Lewis base for the Knoevenagel condensation reaction between various aldehydes and malononitrile, and as Lewis acid for cyanosilylation reactions. Among these STUs, STU‐4 (Ni(BIm)) shows the best catalytic efficiency (conversions >99 %) in both Knoevenagel condensation and cyanosilylation reactions under mild conditions, providing thus an advanced material for both Lewis base and Lewis acid catalysis.  相似文献   

18.
Zeolitic imidazolate framework‐8 (ZIF‐8) was successfully composited with an anionic basic resin 201 × 7 (717‐resin) to provide a novel ZIF‐8/717‐resin composite. Its catalytic activity toward the Knoevenagel condensation reaction was evaluated. Results showed that ZIF‐8/717‐resin composite could efficiently catalyze this reaction, affording the corresponding products in good to excellent yields. Good functional group tolerance, mild reaction conditions, good stability and reusability of the catalyst are the major features of present protocol.  相似文献   

19.
The reaction rate of Knoevenagel condensation can be dramatically enhanced by irradiating the reaction mixture containing an aldehyde, diethyl malonate, P2O5, piperidine, and chlorobenzene with a commercial microwave oven. Six Knoevenagel condensation products were synthesized within 5–15 min in good yields.  相似文献   

20.
Novel conditions have been developed for the preparation of substituted 2-aminothiophenes employing the Knoevenagel condensation followed by the Gewald reaction. The benefits of these conditions are their mildness, and the ease of product isolation. Thus, the Knoevenagel condensation is run in the presence of hexamethyldisilazane and acetic acid, which combine to perform the roles of desiccant, and catalyst. The Gewald reaction is performed with inorganic base in THF/water, which suppresses byproduct formation. This process has been employed in the total synthesis of a multitargeted kinase inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号