首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 190 毫秒
1.
通过溶解度法研究了萘从水到水-叔丁醇(TBA)混合溶剂中的标准迁移热力学性质.结果表明, 标准迁移自由能随叔丁醇摩尔分数x(TBA)的增加表现出复杂的下降趋势.标准迁移熵和标准迁移焓呈现双峰变化.迁移熵和迁移焓的双峰变化, 表明系列H2O-TBA混合溶剂的微观结构经历了从相对的有序到无序到再有序、再无序、再有序的变化过程;H2O-TBA混合溶剂中除了在富水区存在着笼合物特殊结构外, 在x(TBA) 约为0.08处还存在着一相对有序的结构.  相似文献   

2.
50年代,Nair等利用电动势法研究了硫酸镁离子对缔合过程的热力学量,Chand等也对水溶液中硫酸镁离子对的性质做过研究,宋彭生和孙柏对硼酸镁和硼酸钙离子对做了研究,目前,还没有人研究有机溶剂对[MgSO4]^0离子对标准缔合常数Kb的影响,本文在278.15-318.15K温度范围内,测定了无液接电池(A),(B)的电动热E:Pt,H2(101.325kPa)|(HCl(m1),H2SO4(m2),i-PrOH(x),H2O(1-x)|AgCl-Ag(A) Pt,H2(101.325kPa)|(HCl(m1),MgSO4(m2),i-PrOH(x),H2O(1-x)|AgCl-Ag(B)其中,mi为物质i的质量摩尔浓度,x表示异丙醇i-PrOH在混合溶剂中的摩尔分数,保持x=0.05。利用电池A的电动势,在Debye-Hueckel理论基础上,确定了H2SO4在混合溶剂中的二级标准解离常数K2;利用电池B的电动势,确定了[MgSO4]^0离子在对沸合溶剂中的标准缔合常数KD,根据实验结果计算了离子缔合熵和焓,讨论了异丙醇对KD的影响,指出离子缔合熵是形成离子对的推动力。  相似文献   

3.
在恒定溶液总离子强度I=1.00mol.kg^-^1, 改变异丙醇在混合溶剂中的摩尔分数x=0.025、0.075和0.100条件下, 测定了无液接界电池(A)和电池(B)的电动势.Pt, H2(1.013x10^5Pa)|HCl(m), i-PrOH(x), H2O(1-x)|AgCl-AgPt, H2(1.013X10^5Pa)|HCl(mA), NaCl(mB), i-PrOH(x), H2O(1-x)AgCl-Ag (B)根据电池(A)的电动势, 确定混合溶剂中Ag-AgCl电极的标准电极电势, 讨论了HCl的迁移性质. 利用电池(B)的电动势, 确定HCl活度系数γA. 结果表明, 在恒定I为1.00mol.kg^-^1时, HCl的活度系数仍然服从Harned规则. 在恒定溶液组成时, lgγA对热力学温度的倒数1/T作图, 具有良好直线关系. 进一步讨论了混合物中HCl的相对偏摩尔焓和HCl的溶剂化数及介质效应.  相似文献   

4.
在恒定溶液总离子强度I=1.00mol.kg^-^1, 改变异丙醇在混合溶剂中的摩尔分数x=0.025、0.075和0.100条件下, 测定了无液接界电池(A)和电池(B)的电动势.Pt, H2(1.013x10^5Pa)|HCl(m), i-PrOH(x), H2O(1-x)|AgCl-AgPt, H2(1.013X10^5Pa)|HCl(mA), NaCl(mB), i-PrOH(x), H2O(1-x)AgCl-Ag (B)根据电池(A)的电动势, 确定混合溶剂中Ag-AgCl电极的标准电极电势, 讨论了HCl的迁移性质. 利用电池(B)的电动势, 确定HCl活度系数γA. 结果表明, 在恒定I为1.00mol.kg^-^1时, HCl的活度系数仍然服从Harned规则. 在恒定溶液组成时, lgγA对热力学温度的倒数1/T作图, 具有良好直线关系. 进一步讨论了混合物中HCl的相对偏摩尔焓和HCl的溶剂化数及介质效应.  相似文献   

5.
RbCl在H2O-DMF混合溶剂中活度系数的测定   总被引:2,自引:0,他引:2  
应用Corning-价阳离子选择电极(M~+-ISE)和Orion氯离子选择电极组成可逆电池,CI~--ISE|RbCl(m),H2O(1-x),DMF(x)M~ -ISE.测量该电池标准电动势E_m,运用扩展的Debye-Hckel公式,计算RbCl在283.15至318.15K七个温度下由H2O至H2O-DMF混和溶剂的标准迁移自由能ΔG和在不同组成(H2O-DMF)混合溶剂中平均离子活度系数γ±,并对迁移自由能及活度系数随混合溶剂有机物组份的摩尔分数的变化进行了讨论。  相似文献   

6.
在303.15 K、313.15 K、323.15 K、333.15 K温度下,0-6 MPa压力范围内测定了甲烷在水-叔丁醇混合溶剂中的溶解度.溶剂中叔丁醇的摩尔分数(x_(TBA))从0到1.结果表明,在温度和溶剂组成一定条件下,甲烷的溶解度随其分区的增加而增大,随x_(TBA)的增加,在富水区内,甲烷的溶解度变化较缓慢,当x_(TBA)超过某值时,甲烷的溶解度随x_(TBA)的增加而增大,并且幅度较大;在x_(TBA)约为0-0.045范围内,甲烷的溶解度随温度增加而减小,x_(TBA)约在0.045-0.15范围内,溶解度随温度增加而增加,x_(TBA)约在0.15~1.0范围内,溶解度随温度增加而减小.根据溶解度与温度和溶剂组成的关系可以推测,在303.15-333.15 K、0-6 MPa范围内,水-叙丁醇混合溶剂中仍存在笼合物结构.根据溶解度与温度、压力的关系讨论了甲烷在此混合溶剂中的亨利常数、偏摩尔体积、标准溶解自由能、标准溶解焓和标准溶解熵.  相似文献   

7.
本文在恒定异丙醇摩尔分数x=0.05的条件下, 应用电动势法测定无液体接界电池(A)和电池(B)的电动势:Pt, H_2(latm)|HCl(m), 2-propanol(x), H_2O(1-x)|Agcl-Ag (A)和Pt, H_2(latm)|HCl(m_A), NaCl(m_B), 2-propanol(x), H_2O(1-x)|AgCl-Ag (B)根据电池(A)电动势确定混合溶剂中的Ag-AgCl电极的标准电极电势, 讨论了HCl的迁移性质; 利用电池(B)电动势确定HCl在该体系中的活度系数γ_A, 在恒定总离子强度下, HCl的活度系数遵守Harned规则。在溶液组成恒定时, logγ_A是温度倒数1/T的线性函数, 讨论了混合物中HCl的相对偏摩尔焓, 计算了HCl的一级、二级和总介质效应。  相似文献   

8.
在恒定溶液总离子强度I=1.00mol·kg~(-1), 改变异丙醇在混合溶剂中的摩尔分数x=0.025、0.075和0.100条件下,测定了无液接界电池(A)和电池(B)的电动势。 Pt,H_2(1.013×10~5Pa)|HCl(m),i-PrOH(x),H_2O(1-x)|AgCl-Ag (A) Pt,H_2(1.013×10~5Pa)|HCl(m_A),NaCl(m_B),i-PrOH(x),H_2O(1-x)|AgCl-Ag(B) 根据电池(A)的电动势,确定混合溶剂中Ag-AgCl电极的标准电极电势,讨论了HCl的迁移性质。利用电池(B)的电动势,确定HCl活度系数γ_A。结果表明,在恒定I为1.00mol·kg~(-1)时,HCl的活度系数仍然服从Harned规则。在恒定溶液组成时,lgγ_A对热力学温度的倒数1/T作图,具有良好直线关系。进一步讨论了混合物中HCl的相对偏摩尔焓和HCl的溶剂化数及介质效应。  相似文献   

9.
在恒定1,2-丙二醇摩尔分数X为0.05的混合溶剂中,在5-45℃温度范围内测定无液接电池Pt,H2(1 atm)HCl(ma),1,2-C3H5(OH)2(X),H2O(1-X)|AgCl-Ag(A)和Pt,H2(1 atm)|HCl(ma),NaCl(mb),1,2-C3H5(OH)2(X),H2O(1-X)|AgCl-Ag (B)的电动势.利用电池A的电动势确定混合溶剂中Ag-AgCl电极的标准电极电势,利用电池B的电动势确定了HCl在混合溶剂的多组分电解质溶液中的活度系数γA.指出了在恒定总离子强度下HCl仍然服从Harned规则,在溶液组成恒定时,logγA是温度T的线性函数.HCl的相对偏摩尔焓遵守类似的Harned规则,计算了HCl的一级、二级和总介质效应.  相似文献   

10.
乙二醇和水混合溶剂多组分电解质热力学   总被引:4,自引:0,他引:4  
在乙二醇和水混合溶剂中恒定乙二醇质量分数w=0.1的条件下,应用经典的电动势方法测定无液体接界电池的电动势: Pt,H2 (105 Pa )│HCl (质量摩尔浓度m), C2H6O2 (w), H2O (1-w)│AgCl-Ag (A) Pt,H2 (105 Pa )│HCl (mA), NaCl(mB), C2H6O2 (w), H2O (1-w)│AgCl-Ag (B) 根据测得电池(A)的电动势,确定混合溶剂中AgCl-Ag电极的标准电极电势,讨论了HCl的迁移性质.利用电池(B)的电动势,计算出HCl的活度系数γA.结果表明,在溶液中总离子强度保持恒定, HCl的活度系数服从Harned规则.在溶液组成恒定时, lgγA是温度倒数1/T的线性函数. 进一步讨论了混合物中HCl的相对偏摩尔焓和介质效应.  相似文献   

11.
Analyses of the structure of two to four water molecule clusters confined between two benzene and between two naphthalene molecules have been performed using ab initio methods. The water clusters tend to maximize the number of hydrogen bonds via formation of a cyclic network. The oxygen atoms locate approximately in the middle of the confined geometry, and the dipole vectors arrange either parallel or pointing to the surfaces. Energy barriers for proton transfer calculated for H3O+-(H2O) complexes in the same confined geometries suggest that there is a specific range of confinement that helps to lower the energy barriers of the proton transfer. When the walls are too close to each other, at a separation of 4 A, the energy barriers are extremely high. Confinement does not lower the barrier energies of proton transfer when the H3O+-(H2O) complexes are located further from each of the surfaces by more than approximately 8 A.  相似文献   

12.
Standard thermodynamic functions of transfer of naphthalene and 2-naphthoic acid from water to (water + ethanol) mixtures at T=298.15 K have been determined from solubility measurements at different temperatures. Standard free energies of transfer of both naphthalene and 2-naphthoic acid showed decreasing tendency with the increasing x(EtOH), and the standard entropy and enthalpy of transfer exhibited a change of double peaks with x(EtOH). The ΔtrG0 of 2-naphthoic acid decreased more rapidly than that of naphthalene when x(EtOH) < 0.746 and lower than that of naphthalene when x(EtOH) >0.746 at T=298.15 K. The double peaks in the curves of standard entropy and enthalpy of transfer illustrated that the microstructure of the series of mixed solvents of (water + ethanol) underwent a variable process from ordered to disordered and then from disordered to ordered. The results mean that there is a relatively ordered structure near x(EtOH)=0.13 in the (water + ethanol) solutions besides the existence of a clathrate structure in the water-rich region.  相似文献   

13.
The synthesis, structure, and physical properties of a series of oxo-bridged dinuclear Fe(III) complexes containing pendant naphthalene groups are described. The compounds [Fe(2)O(O(2)CCH(2)-C(10)H(7))(tren)(2)](BPh(4))(NO(3))(2) (8), [Fe(2)O(O(2)CCH(2)-C(10)H(7))(TPA)(2)](ClO(4))(3) (9), Fe(2)O(O(2)CCH(2)-C(10)H(7))(2)(Tp)(2) (10), and Fe(2)O((O(2)CCH(2)CH(2))(2)-C(10)H(6))(Tp)(2) (11) (where tren is tris(2-aminoethyl)amine, TPA is tris(2-pyridyl)amine, and Tp is hydrotrispyrazolylborate) have been characterized in terms of their structural, spectroscopic, magnetic, and photophysical properties. All four complexes exhibit moderately strong intramolecular antiferromagnetic exchange between the high-spin ferric ions (ca. -130 cm(-)(1) for H = -2JS(1).S(2)). Room-temperature steady-state emission spectra for compounds 8-11 in deoxygenated CH(3)CN solution reveal spectral profiles similar to methyl-2-naphthyl acetate and [Zn(2)(OH)(O(2)CCH(2)-C(10)H(7))(2)(TACN-Me(3))(2)](ClO(4)) (13, where TACN-Me(3) is N,N,N-1,4,7-trimethyltriazacyclononane) but are significantly weaker in intensity relative to these latter two compounds. Time-resolved emission data for the iron complexes following excitation at 280 nm can be fit to simple exponential decay models with tau(obs)(S)()1 = 36 +/- 2, 32 +/- 4, 30 +/- 5, and 39 +/- 3 ns for compounds 8-11, respectively. The decays are assigned to the S(1) --> S(0) fluorescence of naphthalene; all of the lifetimes are less than that of the zinc model complex (tau(obs)(S)()1 = 45 +/- 2 ns), indicating quenching of the S(1) state by the iron-oxo core. Nanosecond time-resolved absorption data on [Zn(2)(OH)(O(2)CCH(2)-C(10)H(7))(2)(TACN-Me(3))(2)](ClO(4)) reveal a feature at lambda(max) = 420 nm that can be assigned as the T(1) --> T(n) absorption of the naphthalene triplet; the rise time of 50 +/- 10 ns corresponds to an intersystem crossing rate of 2 x 10(7) s(-1). A similar feature (though much weaker in intensity) is also observed for compound 8. The order-of-magnitude reduction in the T(1) lifetime of the pendant naphthalene for all of the iron-oxo complexes (tau(obs)(T)1 = 5 +/- 2 micros vs 90 +/- 10 micros for [Zn(2)(OH)(O(2)CCH(2)-C(10)H(7))(2)(TACN-Me(3))(2)](ClO(4))) indicates quenching of the naphthalene triplet with an efficiency of >90%. Neither the naphthalene radical cation nor the reduced Fe(II)Fe(III) species were observed by transient absorption spectroscopy, implying that energy transfer is the most likely origin for the quenching of both the S(1) and T(1) states. Spectral overlap considerations strongly support a F?rster (i.e., dipolar) mechanism for energy transfer from the S(1) state, whereas the lack of phosphorescence from either the free naphthyl ester or the Zn model complex suggests Dexter transfer to the diiron(III) core as the principal mechanism of triplet quenching. The notion of whether spin exchange within the diiron(III) core is in part responsible for the unusual ability of the iron-oxo core to engage in energy transfer from both the singlet and triplet manifolds of naphthalene is discussed.  相似文献   

14.
The present study concerns an experimental microkinetic approach of the photocatalytic oxidation (PCO) of isopropyl alcohol (IPA) into acetone on a pure anatase TiO2 solid according to a procedure previously developed. Mainly, the kinetic parameters of each surface elementary step of a plausible kinetic model of PCO of IPA are experimentally determined: natures and amounts of the adsorbed species and rate constants (preexponential factor and activation energy). The kinetics parameters are obtained by using experiments in the transient regime with either a FTIR or a mass spectrometer as a detector. The deep oxidation (CO2 and H2O formation) of low concentrations of organic pollutants in air is one of the interests of the PCO. For IPA, literature data strongly suggest that acetone is the single route to CO2 and H2O and this explains that the present study is dedicated to the elementary steps involving gaseous and adsorbed C3H(x)O species. The microkinetic study shows that strongly adsorbed IPA species (two species denoted nd-IPA(sads) and d-IPA(sads) due to non- and dissociative chemisorption of IPA, respectively) are involved in the PCO of IPA. A strong competitive chemisorption between IPA(sads) and a strongly adsorbed acetone species controls the high selectivity in acetone of the PCO at a high coverage of the surface by IPA(sads). The kinetic parameters of the elementary steps determined in the present study are used in part 2 to provide a modeling of macroscopic kinetic data such as the turnover frequency (TOF in s(-1)) of the PCO using IPA/O2 gas mixtures.  相似文献   

15.
Calorimetric techniques have revealed that the enthalpy of reaction with water is more exothermic by about 2.2 kcal/mol, for the perdeuteriated naphthalene anion radical (K+C10D8*-(s) + H2O(liq) --> 1/2C10D8H2(s) + 1/2C10D8(s) + KOH(aq)) than it is for the perprotiated system. These results, when coupled with the known enthalpy of electron transfer between naphthalene and its perdeuteriated analogue imply that the heat of hydrogenation of naphthalene decreases by about 1.8 kcal/mol upon perdeuteriation of the naphthalene.  相似文献   

16.
Vibrational and electronic spectra of protonated naphthalene (NaphH(+)) microsolvated by one and two water molecules were obtained by photofragmentation spectroscopy. The IR spectrum of the monohydrated species is consistent with a structure with the proton located on the aromatic molecule, NaphH(+)-H(2)O. Similar to isolated NaphH(+), the first electronic transition of NaphH(+)-H(2)O (S(1)) occurs in the visible range near 500 nm. The doubly hydrated species lacks any absorption in the visible range (420-600 nm) but absorbs in the UV range, similar to neutral Naph. This observation is consistent with a structure, in which the proton is located on the water moiety, Naph-(H(2)O)(2)H(+). Ab initio calculations for [Naph-(H(2)O)(n)]H(+) confirm that the excess proton transfers from Naph to the solvent cluster upon attachment of the second water molecule.  相似文献   

17.
杂多酸H3PMoxW12-xO40是通过其适宜的酸性,氧化性的双功能的配合催化,使H2O2氧化环戊烯为戊二醛,液-液相转移反应萃取氧化过程是杂多酸与相转移催化剂形成油溶性配合物,此配合物在相界面被H2O2氧化为过氧化杂多酸配合物,过氧化杂多酸配合物在有机相可能机理是H2O2氧化杂多酸为过氧化杂多酸。  相似文献   

18.
The unimolecular reactivity of M(2+)(H(2)O)(2), M = Be, Mg, Ca, Sr, and Ba, is investigated by density functional theory. Dissociation of the complex occurs either by proton transfer to form singly charged metal hydroxide, MOH(+), and protonated water, H(3)O(+), or by loss of water to form M(2+)(H(2)O) and H(2)O. Charge transfer from water to the metal forming H(2)O(+) and M(+)(H(2)O) is not favorable for any of the metal complexes. The relative energetics of these processes are dominated by the metal dication size. Formation of MOH(+) proceeds first by one water ligand moving to the second solvation shell followed by proton transfer to this second-shell water molecule and subsequent Coulomb explosion. These hydroxide formation reactions are exothermic with activation energies that are comparable to the water binding energy for the larger metals. This results in a competition between proton transfer and loss of a water molecule. The arrangement with one water ligand in the second solvation shell is a local minimum on the potential energy surface for all metals except Be. The two transition states separating this intermediate from the reactant and the products are identified. The second transition state determines the height of the activation barrier and corresponds to a M(2+)-OH(-)-H(3)O(+) "salt-bridge" structure. The computed B3LYP energy of this structure can be quantitatively reproduced by a simple ionic model in which Lewis charges are localized on individual atoms. This salt-bridge arrangement lowers the activation energy of the proton-transfer reaction by providing a loophole on the potential energy surface for the escape of H(3)O(+). Similar salt-bridge mechanisms may be involved in a number of proton-transfer reactions in small solvated metal ion complexes, as well as in other ionic reactions.  相似文献   

19.
The catalytic water formation reaction on Pt(111) was investigated by kinetic Monte Carlo simulations, where the interaction energy between reaction species and the high mobility of H(2)O molecule was considered. Results obtained clearly reproduce the scanning tunneling microscopy images which show that the reaction proceeds via traveling the reaction fronts on the O-covered Pt(111) surface by creating H(2)O islands backwards. The reaction front is a mixed layer of OH and H(2)O with a (square root 3 x square root 3)R30(o) structure. Coverage change during the reaction is also reproduced in which the reaction consists of three characteristic processes, as observed by the previous experiments. The simulation also revealed that the proton transfer from H(2)O to OH plays an important role to propagate the water formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号