首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear receptor superfamily is an excellent example of targets that orchestrates cancer, inflammation, lipid and glucose metabolism. We report a protocol for the development of novel PPARγ antagonists by employing 3D QSAR based virtual screening for the identification of ligands with anticancer properties. The models are generated based on a large and diverse set of PPARγ antagonist ligands by the HYPOGEN algorithm using Discovery Studio 2019 drug design software. Among the 10 hypotheses generated, Hypotheses 2 showed the highest correlation coefficient values of 0.95 with less RMS deviation of 1.193. Validation of the developed pharmacophore model was performed by Fischer’s randomization and screening against test and decoy set. The GH score or goodness score was found to be 0.81 indicating moderate to a good model. The selected pharmacophore model Hypo 2 was used as a query model for further screening of 11,145 compounds from the PubChem, sc-PDB structure database, and designed novel ligands. Based on fit values and ADMET filter, the final 10 compounds with the predicated activity of ≤ 3 nM were subjected for docking analysis. Docking analysis revealed the unique binding mode with hydrophobic amino acid that can cause destabilization of the H12 which is an important molecular mechanism to prove its antagonist action. Based on high CDocker scores, Cpd31 was synthesized, purified, analyzed and screened for PPARγ competitive binding by TR-FRET assay. The biochemical protein binding results matched the predicted results. Further, Cpd31 was screened against cancer cells and validated the results.  相似文献   

2.
2-Acyl-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and biologically evaluated. (S)-2-(2,4-Hexadienoyl)-7-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (14) showed peroxisome proliferator-activated receptor γ (PPARγ) and PPARα agonist activities and protein-tyrosine phosphatase 1B (PTP-1B) inhibitory activities. PPARγ agonist activity of 14 was comparable to that of rosiglitazone, and PTP-1B inhibitory activity was about 10-fold weaker than that of ertiprotafib, a PTP-1B inhibitor. Compound 14 showed high oral absorption in rats and potent hypoglycemic effects in KK-A(y) mice. In conclusion, 14 would be an excellent lead compound for a new type of anti-diabetic drug with triple actions.  相似文献   

3.
Novel 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and (S)-7-(2-{2-[(E)-2-cyclopentylvinyl]-5-methyloxazol-4-yl}ethoxy)-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (14c) was identified as a peroxisome proliferator-activated receptor (PPAR) α/γ dual agonist. The transactivation activity of 14c was comparable to that of rosiglitazone in human PPARγ (EC50=0.14 μM) and was much higher than in human PPARα (EC50=0.20 μM). In addition, 14c, but not rosiglitazone, showed human protein-tyrosine phosphatase 1B (PTP-1B) inhibitory activity (IC50=1.85 μM). 14c showed about 10-fold stronger hypoglycemic and hypotriglyceridemic effects than rosiglitazone by repeated application for 14 d in male KK-Ay mice. Furthermore, 14c, but not rosiglitazone, increased hepatic peroxisome acyl CoA oxidase activity at 30 mg/kg/d for 7 d in male Syrian hamsters, probably due to its PPARα agonist activity. 14c did not affect plasma volume at 100 mg/kg/d for 14 d in male ICR mice, while rosiglitazone significantly increased it. In conclusion, 14c is a promising candidate for an efficacious and safe anti-diabetic drug with triple actions as a PPARα/γ dual agonist with PTP-1B inhibitory activity.  相似文献   

4.
The peroxisome proliferator activator receptor-γ (PPAR-γ) remained the most successful target for management of diabetes mellitus. The present work endeavors rational designing of some novel PPAR-γ agonists bearing benzylideneamino-benzylidene-thiazolidine-2,4-dione scaffold. The research involved virtual screening of 37 different molecules by molecular docking studies performed by Molecular Design Suite (MDS) into the ligand binding domain of PPAR-γ receptor to explore the binding affinity and conformations of the molecules. Eight compounds; TZD1, TZD-4, TZD-7, TZD-16, TZD-25, TZD-28, TZD-34, and TZD-37 demonstrated high affinity for PPAR-γ binding site. The following compounds were taken into the account and synthesized using a multi-step synthesis protocol. The purity of the synthesized compounds was ascertained by sophisticated analytical techniques such as IR, NMR, Mass and elemental analysis. The compounds were tested for glucose uptake assay by using 3T3-L1 cell lines, where all the candidates exhibited nearly similar potential for uptake of glucose into the lines as that of standard drug rosiglitazone. Three molecules; TZD-1, TZD-4, and TZD-34 showed most prominent activity over hyperglycemic control. This research opened new avenues for smart designing of molecules with high efficiency towards the management of hyperglycemia.  相似文献   

5.
PPARα and PPARγ play an important role in regulating glucose and lipid metabolism. The single and selective PPARα or PPARγ agonists have caused several side effects such as edema, weight gain and cardiac failure. In the recent years, the dual PPARs agonist development has become a hot topic in the antidiabetic medicinal chemistry field. In this paper, the compound CHEMBL230490 were gained from CHEMBL database, by means of complex-based pharmacophore (CBP) virtual screening, molecular docking, ADMET prediction and molecular dynamics (MD) simulations. The compound CHEMBL230490 not only displayed higher binding scores and better binding modes with the active site of PPARα a/γ, but also had more favorable the pharmacokinetic properties and toxicity evaluated by ADMET prediction. The representative compound CHEMBL230490 was performed to MDs for studying a stable binding conformation. The results indicated that the CHEMBL230490 might be a potential antidiabetic lead compound. The research provided a valuable approach in developing novel PPARα/γ dual agonists for the treatment of type 2 diabetes mellitus (T2DM).  相似文献   

6.

Background

An alarming requirement for finding newer antidiabetic glitazones as agonists to PPARγ are on its utmost need from past few years as the side effects associated with the available drug therapy is dreadful. In this context, herein, we have made an attempt to develop some novel glitazones as PPARγ agonists, by rational and computer aided drug design approach by implementing the principles of bioisosterism. The designed glitazones are scored for similarity with the developed 3D pharmacophore model and subjected for docking studies against PPARγ proteins. Synthesized by adopting appropriate synthetic methodology and evaluated for in vitro cytotoxicity and glucose uptake assay. Illustrations about the molecular design of glitazones, synthesis, analysis, glucose uptake activity and SAR via 3D QSAR studies are reported.

Results

The computationally designed and synthesized ligands such as 2-(4-((substituted phenylimino)methyl)phenoxy)acetic acid derivatives were analysed by IR, 1H-NMR, 13C-NMR and MS-spectral techniques. The synthesized compounds were evaluated for their in vitro cytotoxicity and glucose uptake assay on 3T3-L1 and L6 cells. Further the activity data was used to develop 3D QSAR model to establish structure activity relationships for glucose uptake activity via CoMSIA studies.

Conclusion

The results of pharmacophore, molecular docking study and in vitro evaluation of synthesized compounds were found to be in good correlation. Specifically, CPD03, 07, 08, 18, 19, 21 and 24 are the candidate glitazones exhibited significant glucose uptake activity. 3D-QSAR model revealed the scope for possible further modifications as part of optimisation to find potent anti-diabetic agents.
  相似文献   

7.
The effect of retinoid X receptor (RXR) antagonists on the conformational exchange of the RXR ligand‐binding domain (LBD) remains poorly characterized. To address this question, we used nuclear magnetic resonance spectroscopy to compare the chemical shift perturbations induced by RXR antagonists and agonists on the RXRα LBD when partnered with itself as a homodimer and as the heterodimeric partner with the peroxisome proliferator‐activated receptor γ (PPARγ) LBD. Chemical shift mapping on the crystal structure showed that agonist binding abolished a line‐broadening effect caused by a conformational exchange on backbone amide signals for residues in helix H3 and other regions of either the homo‐ or hetero‐dimer, whereas binding of antagonists with similar binding affinities failed to do so. A lineshape analysis of a glucocorticoid receptor‐interacting protein 1 NR box 2 coactivator peptide showed that the antagonists enhanced peptide binding to the RXRα LBD homodimer, but to a lesser extent than that enhanced by the agonists. This was further supported by a lineshape analysis of the RXR C‐terminal residue, threonine 462 (T462) in the homodimer but not in the heterodimer. Contrary to the agonists, the antagonists failed to abolish a line‐broadening effect caused by a conformational exchange on the T462 signal corresponding to the RXRα LBD–antagonist–peptide ternary complex. These results suggest that the antagonists lack the ability of the agonists to shift the equilibrium of multiple RXRα LBD conformations in favor of a compact state, and that a PPARγ LBD‐agonist complex can prevent the antagonist from enhancing the RXRα LBD‐coactivator binding interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The rhytidenone family comprises spirobisnaphthalene natural products isolated from the mangrove endophytic fungus Rhytidhysteron rufulum AS21B. The biomimetic synthesis of rhytidenone A was achieved by a Michael reaction/aldol/lactonization cascade in a single step from the proposed biosynthetic precursor rhytidenone F. Moreover, the mode of action of the highly cytotoxic rhytidenone F was investigated. The pulldown assay coupled with mass spectrometry analysis revealed the target protein PA28γ is covalently attached to rhytidenone F at the Cys92 residue. The interactions of rhytidenone F with PA28γ lead to the accumulation of p53, which is an essential tumor suppressor in humans. Consequently, the Fas‐dependent signaling pathway is activated to initiate cellular apoptosis. These studies have identified the first small‐molecule inhibitor targeting PA28γ, suggesting rhytidenone F may serve as a promising natural product lead for future anticancer drug development.  相似文献   

10.
In search of novel anti tubercular agents, a series of twelve 4‐(substituted benzylidene)‐2‐p‐tolyloxazol‐5(4H)‐ones (5a – 5l) has been synthesized, characterised and subjected to evaluate their antitubercular activity for the first time against Mycobacterium tuberculosis H37Rv (ATCC 27294). The out‐put of these studies disclosed that all the synthesized target molecules of the series displayed good to moderate activity with MIC values ranging 2–32 μg/mL in comparison with the standard first line antitubercular drugs Rifampicin and Isoniazid. Compound 5e with three methoxy groups meta to each other, is the most distinctive compound identified amongst the series, because of its remarkable in vitro antitubercular activity and thus may act as a promising lead molecule for further explorations.  相似文献   

11.
A simple and dual‐target method based on ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry combined with dual‐bioactive [nuclear factor‐κB (NF‐κB) and β2‐adrenergic receptor] luciferase reporter assay systems was developed to rapidly characterize the chemical structure of various bioactive compounds of TCM preparations. Chuanbeipipa dropping pills, a traditional Chinese medicine preparation used for the clinical therapy of chronic obstructive lung disease and cough caused by bronchial catarrh, was analyzed with this method. Potential anti‐inflammatory and spasmolytic constituents were screened using NF‐κB and β2‐adrenergic receptor activity luciferase reporter assay systems and simultaneously identified according to the time‐of‐flight mass spectrometry data. One β2‐adrenergic receptor agonist (ephedrine) and two structural types of NF‐κB inhibitors (platycosides derivatives and ursolic acid derivatives) were characterized. Platycodin D3 and E were considered new NF‐κB inhibitors. Further cytokine and chemokine detection confirmed the anti‐inflammatory effects of the potential NF‐κB inhibitors. Compared with conventional fingerprints, activity‐integrated fingerprints that contain both chemical and bioactive details offer a more comprehensive understanding of the chemical makeup of plant materials. This strategy clearly demonstrated that multiple bioactivity‐integrated fingerprinting is a powerful tool for the improved screening and identification of potential multi‐target lead compounds in complex herbal medicines. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Upon the study of small-molecules binding to proteins, the traditional methods for calculating dissociation constants (Kd and Ki) have shortcomings in dealing with the single binding site models. In this paper, two equations have been derived to solve this problem. These two equations are independent of the total concentration or initial degree of saturation of receptor and the activity of the competitive molecule. Through nonlinear fitting against these two equations, Kd value of a probe can be obtained by binding assay, and Ki value of a ligand can be obtained by competitive assay. Moreover, only the total concentrations of receptor([R]t), ligand([L]t) and probe([P]t) are required for the data fitting. In this work, Ki values of some typical ligands of PPARγ were successfully determined by use of our equations, among which the Ki value of PPARγ-LY171883 was reported for the first time.  相似文献   

13.
Sustained identification of innovative chemical entities is key for the success of chemical biology and drug discovery. We report the fragment‐based, computer‐assisted de novo design of a small molecule inhibiting Helicobacter pylori HtrA protease. Molecular binding of the designed compound to HtrA was confirmed through biophysical methods, supporting its functional activity in vitro. Hit expansion led to the identification of the currently best‐in‐class HtrA inhibitor. The results obtained reinforce the validity of ligand‐based de novo design and binding‐kinetics‐guided optimization for the efficient discovery of pioneering lead structures and prototyping drug‐like chemical probes with tailored bioactivity.  相似文献   

14.
Docking simulation of 18 agonists with the ligand binding pocket (LBP) of PPARγ has been performed. The binding conformations and binding affinities of these agonists were obtained by use of the flexible docking protocol FlexX. Test compound calculations indicated that FlexX can reproduce the binding conformation of the crystal structure (root mean square deviation = 1.43 Å); moreover, the predicted binding affinities correlate well with the activities of these agonists. The interaction model and pharmacophore of PPARγ agonists were derived and the difference in biologic activities of these agonists can be well explained. The PPARγ agonists must have both polar head and the hydrophobic tail, which form hydrogen bonds and hydrophobic contacts with hydrophilic and hydrophobic regions of the LBP of PPARγ, respectively. In addition, a suitable linker is also necessary. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 93: 405–410, 2003  相似文献   

15.
α‐Conotoxins are disulfide‐rich peptides that target nicotinic acetylcholine receptors. Recently we identified several α‐conotoxins that also modulate voltage‐gated calcium channels by acting as G protein‐coupled GABAB receptor (GABABR) agonists. These α‐conotoxins are promising drug leads for the treatment of chronic pain. To elucidate the diversity of α‐conotoxins that act through this mechanism, we synthesized and characterized a set of peptides with homology to α‐conotoxins known to inhibit high voltage‐activated calcium channels via GABABR activation. Remarkably, all disulfide isomers of the active α‐conotoxins Pu1.2 and Pn1.2, and the previously studied Vc1.1 showed similar levels of biological activity. Structure determination by NMR spectroscopy helped us identify a simplified biologically active eight residue peptide motif containing a single disulfide bond that is an excellent lead molecule for developing a new generation of analgesic peptide drugs.  相似文献   

16.
Dipeptidyl peptidase 4 (DPP‐4) is a clinically validated target for the treatment of type 2 diabetes mellitus (T2DM). To discover novel and potent DPP‐4 inhibitors, three series of compounds were designed and synthesized in this study based on our previously identified novel scaffold of 2‐phenyl‐3,4‐dihydro‐2H‐benzo[f]chromen‐3‐amine. Among the designed compounds, 41d‐1 was the most potent one with an IC50 value of 16.00 nM. Besides, 41d‐1 (5 mg/kg) displayed a moderate glucose tolerance capability in ICR mice. Structure‐activity‐relationship (SAR) studies were discussed in detail, which is constructive for our further optimization.  相似文献   

17.
Peroxisome proliferator activated receptors (PPARs) have been shown to have critical roles in fatty acid oxidation, triglyceride synthesis, and lipid metabolism - making them an important target in drug discovery. Here we describe the in silico design, synthesis and in vitro characterisation of a novel series of 2,5-disubstituted indoles as PPARα/γ dual agonists. PPAR activation assays are performed with known agonists diazabenzene (WY14.643), aminopyridine (BRL49653) and bisaryl (L165.041), as positive controls. All the indole compounds synthesized are found to be active PPARα and PPARγ agonists, with particular efficacy from those with 2-naphthylmethyl substitution. This is a useful demonstration of a new de novo design methodology implemented by the protobuild program and its ability to rapidly produce novel modulators for a well characterized drug target.  相似文献   

18.
Cell‐based assays enable monitoring of small‐molecule bioactivity in a target‐agnostic manner and help uncover new biological mechanisms. Subsequent identification and validation of the small‐molecule targets, typically employing proteomics techniques, is very challenging and limited, in particular if the targets are membrane proteins. Herein, we demonstrate that the combination of cell‐based bioactive‐compound discovery with cheminformatic target prediction may provide an efficient approach to accelerate the process and render target identification and validation more efficient. Using a cell‐based assay, we identified the pyrazolo‐imidazole smoothib as a new inhibitor of hedgehog (Hh) signaling and an antagonist of the protein smoothened (SMO) with a novel chemotype. Smoothib targets the heptahelical bundle of SMO, prevents its ciliary localization, reduces the expression of Hh target genes, and suppresses the growth of Ptch+/− medulloblastoma cells.  相似文献   

19.
Herein, we report an efficient approach for exploring the novel anticancer mechanism of (?)‐ainsliatrimer A, a structurally complex and unique trimeric sesquiterpenoid, through a combined strategy of diverted total synthesis (DTS) and bioorthogonal ligation (TQ ligation), which allowed us to visualize the subcellular localization of this natural product in live cells. Further biochemical studies facilitated by pretarget imaging revealed that PPARγ, a nucleus receptor, was a functional cellular target of ainsliatrimer A. We also confirmed that the anticancer activity of ainsliatrimer A was caused by the activation of PPARγ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号