首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Q. Huang  G. Chen  J. Liu 《先进技术聚合物》2014,25(12):1391-1395
Polyanilines (PANIs) doped with Zn2+ and Cu2+ were synthesized by H2O2 oxidative polymerization of aniline in the presence of corresponding metal chloride in solution. The products were characterized by elemental analysis, UV‐Vis‐NIR, FTIR and Raman spectroscopies. Scanning electron micrograph was employed to examine the morphology of PANIs fabricated in the presence of different transition metals. Experimental results showed that transition metal ions had been successfully incorporated into the polymer, and there was a strong interaction between the transition metal ions and the PANI chains. The electrical conductivity of PANI doped with Zn2+ and Cu2+ is 0.37 and 0.21 S/cm, respectively, which is higher than that of HCl doping PANI corresponding to 0.052 S/cm. The cyclic voltammetric study has indicated that incorporation of metal ions in PANI backbone results in increasing of specific capacitance compared to that of HCl doping PANI. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The gas phase reactions of metal ions (Al+, Cu+) with amine molecules [CH3NH2=MA, (CH3)2NH=DMA] were investigated using a laser ablation‐molecular beam method. The directly associated product complex ions,Al+‐MA and Al+‐DMA, and the dehydrogenation product ions, Cu+(CH2NH) and Cu+(C2H5N), as well as hydrated ion Cu+(NC2H5·H2O), have been obtained and recorded from the reactions of the metal ions and organic amine molecules, and density functional theory (B3LYP) calculations have been performed to reveal the optimized geometry, energetics, and reaction mechanism of the title reactions with basis set 6‐311+G(d,p) adopted.  相似文献   

3.
A new ratiometric fluorescent sensor ( 1 ) for Cu2+ based on 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) with di(2‐picolyl)amine (DPA) as ion recognition subunit has been synthesized and investigated in this work. The binding abilities of 1 towards different metal ions such as alkali and alkaline earth metal ions (Na+, K+, Mg2+, Ca2+) and other metal ions ( Ba2+, Zn2+, Cd2+, Fe2+, Fe3+, Pb2+, Ni2+, Co2+, Hg2+, Ag+) have been examined by UV‐vis and fluorescence spectroscopies. 1 displays high selectivity for Cu2+ among all test metal ions and a ~10‐fold fluorescence enhancement in I582/I558 upon excitation at visible excitation wavelength. The binding mode of 1 and Cu2+ is a 1:1 stoichiometry determined via studies of Job plot, the nonlinear fitting of the fluorometric titration and ESI mass.  相似文献   

4.
A 60‐nuclear silver sulfide nanocluster with a highly positive charge ( 1 ) has been synthesized by mixing an octahedral RhIII complex with 2‐aminoethanethiolate ligands, silver(I) nitrate, and d ‐penicillamine in water under mild conditions. The spherical surface of 1 is protected by the chiral octahedral RhIII complex, with cleavage of the C?S bond of the d ‐penicillamine supplying the sulfide ions. Although 1 does not contain d ‐penicillamine, it is optically active because of the enantiomeric excess of the RhIII molecules induced by chiral transfer from d ‐penicillamine. 1 can accommodate/release external Ag+ ions and replace inner Ag+ ions by Cu+ ions. The study demonstrates that a thiolato metal complex and sulfur‐containing amino acid can be used as cluster‐surface‐protecting and sulfide‐supplying regents, respectively, for creating chiral, water‐soluble, structurally precise silver sulfide nanoclusters, the properties of which are tunable through the addition/removal/exchange of Ag+ ions.  相似文献   

5.
A catalytic system based on monolayer‐functionalized gold nanoparticles (Au NPs) that can be electrochemically modulated and reversibly activated is reported. The catalytic activity relies on the presence of metal ions (Cd2+ and Cu2+), which can be complexed by the nanoparticle‐bound monolayer. This activates the system towards the catalytic cleavage of 2‐hydroxypropyl‐p‐nitrophenyl phosphate (HPNPP), which can be monitored by UV/Vis spectroscopy. It is shown that Cu2+ metal ions can be delivered to the system by applying an oxidative potential to an electrode on which Cu0 was deposited. By exploiting the different affinity of Cd2+ and Cu2+ ions for the monolayer, it was also possible to upregulate the catalytic activity after releasing Cu2+ from an electrode into a solution containing Cd2+. Finally, it is shown that the activity of this supramolecular nanosystem can be reversibly switched on or off by oxidizing/reducing Cu/Cu2+ ions under controlled conditions.  相似文献   

6.
Noble metals can be ionized by electrochemical corrosion and transported by electrospray ionization. Mass spectrometry (MS) showed solvated metal ions as the main ionic constituent of the sprayed droplets. Collection of the electrospray plume on a surface yielded noble metal nanoparticles (NPs) under ambient conditions. The NPs were characterized by several techniques. Under typical conditions, capped‐nanoparticle sizes averaged 2.2 nm for gold and 6.5 nm for silver. The gold nanoparticles showed high catalytic activity in the reduction of p‐nitrophenol by NaBH4. Efficient catalysis was also observed by simply directing the spray of solvated Au+ onto the surface of an aqueous p‐nitrophenol/NaBH4 mixture. Organometallic ions were generated by spiking ligands into the spray solvent: for example, CuI bipyridine cations dominated the spray during Cu electrocorrosion in acetonitrile containing bipyridine. This organometallic reagent was shown to be effective in the radical polymerization of styrene.  相似文献   

7.
Using density functional theory calculations, we investigated the structural, energetic, electronic, and optical properties of recently synthesized duplex DNA containing metal‐mediated base pairs. The studied duplex DNA consists of three imidazole (Im) units linked through metal (Im‐M‐Im, M=metal) and four flanking A:T base pairs (two on each side). We examined the role of artificial base pairing in the presence of two distinctive metal ions, diamagnetic Ag+ and magnetic Cu2+ ions, on the stability of duplex DNA. We found that metal‐mediated base pairs form stable duplex DNA by direct metal ion coordination to the Im bases. Our results suggest a higher binding stability of base pairing mediated by Cu2+ ions than by Ag+ ions, which is attributed to a larger extent of orbital hybridization. We furthermore found that DNA modified with Im‐Ag+‐Im shows the low‐energy optical absorption characteristic of π–π*orbital transition of WC A:T base pairs. On the other hand, we found that the low‐energy optical absorption peaks for DNA modified with Im‐Cu2+‐Im originate from spin–spin interactions. Additionally, this complex exhibits weak ferromagnetic coupling between Cu2+ ions and strong spin polarization, which could be used for memory devices. Moreover, analyzing the role of counter ions (Na+) and the presence of explicit water molecules on the structural stability and electronic properties of the DNA duplex modified with Im‐Ag+‐Im, we found that the impact of these two factors is negligible. Our results are fruitful for understanding the experimental data and suggest a potential route for constructing effective metal‐mediated base pairs in duplex DNA for optoelectronic applications.  相似文献   

8.
An approach for the sensitive and selective determination of Ag+, Cu2+ and Hg2+ ions was developed based on the fluorescence quenching of mercaptopropionic acid (MPA) capped CdTe quantum dots in the existence of hydroxyapatite (HAP) nanoribbon spherulites. Among various metal ions investigated, it was found that the fluorescence of CdTe QDs was only sensitive to Ag+, Cu2+ and Hg2+ ions. The addition of HAP into the CdTe system could bring forward a sensitivity improvement of about 1 to 2 orders of magnitude in the detection of Ag+ and Cu2+ compared with the plain CdTe system without the existence of HAP; while there was no sensitization effect for Hg2+. Under optimal conditions, the detection limits for Ag+, Cu2+ and Hg2+ were 20, 56 and 3.0 nmol·L?1, respectively, and the linear ranges were 0.02–50, 0.056–54 and 0.003–2.4 µmol·L?1, respectively. Mechanisms of both QDs fluorescence quenching by metal ions and the sensitization effect by HAP were also discussed.  相似文献   

9.
In our previous study, we have observed that the chelation of various metal ions to the His‐tag motifs mostly involves the i and i+2 His residues for Ni2+, Cu2+, Zn2+ and Co2+. In the present study, various 200 ps molecular dynamics simulations were further conducted to investigate the chelating pathway of various metal ions to the His‐tag motif with 6 His residues (His‐tag6) and the binding affinities of these metal binding pockets towards these metal ions. The results indicate that His‐tag6 with the chelated metal ion located in positions His(2,4) or His(3,5) exhibits the strongest affinity for Ni2+ and Cu2+.K+ was found to be preferred to chelate in His(1,3) and His(3,5) coordinations. However, Fe3+ was found to have higher affinity towards His(1,3) and His(2,4) binding pockets. Our results also suggest that Ni2+ exhibits the highest binding affinity towards His‐tag6 over the other metal ions. Most of the structural variations of the His‐tag6 motif were from the Histidyl side chains during metal ion binding. In addition, there is an inverse linear correlation between the final chelated distance and the charge/volume ratio of metal ion. There is a negative correlation between the metal binding affinity and the averaged potential energy generated from the MD simulations.  相似文献   

10.
A method has been developed for obtaining Cu–Pd hydrosols via catalytic reduction of copper ions by hydrogen on seed palladium nanoparticles 2.5 ± 0.3 nm in size. It has been found that reduction of Cu2+ to metal proceeds stage-by-stage through the formation of an intermediate Cu+ ion. Cu–Pd hydrosol remains stable with respect to sedimentation and aggregation for several weeks. The hydrodynamic size of Cu–Pd nanoparticles increases proportionally to the copper content in particles. It has been shown that this is due to an acidification of the solution as a result of H+ ions formation via the reaction of reduction of Cu2+ ions by hydrogen.  相似文献   

11.
A novel [2]rotaxane was constructed that has a bidentate N,N′‐chelate as part of a rigid, H‐shaped axle and a 24‐membered crown ether macrocycle containing six ether O‐atoms and an olefinic group as the wheel. This unique topology produces a ligand with the ability to dial‐up different donor sets for complexation to metal ions by simply rotating the wheel about the axle. The solution and solid‐state structures of the free ligand and complexes with Li+ and Cu+ show how the ligand adopts different rotational co‐conformations for each. The Li+ ion uses the N,N′‐chelate and O‐donors while the Cu+ center is coordinated to both O‐donors and the olefinic group. This concept of rotationally active ligands should be possible with a wide variety of donor sets and could find broad application in areas of coordination chemistry, such as catalysis and metal sequestration.  相似文献   

12.
CaO–P2O5 glasses with high concentrations of monovalent copper ions were prepared by a simple melt–quench method through CuO and SnO co‐doping. Spectroscopic characterization was carried out by optical absorption with the aim of analyzing the effects of Cu+ ions on the optical band‐gap energies, which were estimated on the basis of indirect–allowed transitions. The copper(I) content is estimated in the CuO/SnO‐containing glasses after the assessment of the concentration dependence of Cu2+ absorption in the visible region for CuO singly doped glasses. An exponential dependence of the change in optical band gaps (relative to the host) with Cu+ concentration is inferred up to about 10 mol %. However, the entire range is divided into two distinct linear regions that are characterized by different rates of change with respect to concentration: 1) below 5 mol %, where the linear dependence presents a relatively high magnitude of the slope; and 2) from 5–10 mol %, where a lower magnitude of the slope is manifested. With increasing concentration, the mean Cu+?Cu+ interionic distance decreases, thereby decreasing the sensitivity of monovalent copper for light absorption. The decrease in optical band‐gap energies is ultimately shown to follow a linear dependence with the interionic distance, suggesting the potential of the approach to gauge the concentration of monovalent copper straightforwardly in amorphous hosts.  相似文献   

13.
In the present study, surface‐enhanced Raman spectra of a bifunctional Raman reporter, 2‐mercaptobenzimidazole, has been found to be responsive exclusively towards Cu2+ ions while the reporter remains anchored on the Au nanoparticle surface. Thus a specific Cu2+‐ion‐detection protocol emerges. The simplicity, sensitivity, and reproducibility of the method allow routine and quantitative detection of Cu2+ ions. An interference study involving a wide number of other metal ions shows the procedure to be uniquely selective and analytically rigorous. A theoretical study was carried out to corroborate the experimental results. Finally, the method is promising for real‐time assessment of Cu2+ ions in aqueous samples and also has the ability to discriminate CuI and CuII ions in solution.  相似文献   

14.
The thermal gas‐phase catalytic reduction of N2O by CO, mediated by the transition‐metal nitride cluster ion [NbN]+, has been explored by using FT‐ICR mass spectrometry and complemented by high‐level quantum chemical calculations. In contrast to the [Nb]+/[NbO]+ and [NbO]+/[Nb(O)2]+ systems, in which the oxidation of [Nb]+ and [NbO]+ with N2O is facile, but in which neither [NbO]+ nor [Nb(O)2]+ react with CO at room temperature, the [NbN]+/[ONbN]+ system at ambient temperature mediates the catalytic oxidation of CO. The origins of the distinctly different reactivities upon nitrogen ligation are addressed by quantum chemical calculations.  相似文献   

15.
A novel assay for the determination of 2,4- and 3,4-diaminotoluene (DAT) isomers based on the low-level electrochemiluminescence (ECL) reaction of these molecules with the group IB transition metal ions Au+and Cu+2, respectively, in aqueous solution is described. DAT isomers were screened for ECL against a repertoire of 32 metals, including metal ions such as Cu+2, Eu+3, Mg+2, Ru+3, and Tb+3associated with other known ECL complexes, at 1:3 added metal ion:ligand molar ratios. The 1:3 molar ratio presumed tris-bidentate octahedral metal coordination complex formation, which generally yielded optimal ECL intensity. The apparent specificity of Au+for 2,4-DAT and Cu+2for 3,4-DAT, as indicated by ECL measurements, may be partly based on ionic size as Au+has nearly twice the ionic diameter of Cu+2and thus may form a coordination complex with themeta,but not theorthoDAT. Other DAT isomers were screened and exhibited mildly enhanced ECL with various metal ions, including group IB transition metal ions, but these ECL enhancements were not statistically significant. In some cases, titration of DAT ligands with Cu+2and Au+over broad concentration ranges produced nonlinear ECL response curves. Despite low-level ECL, sensitivities in the ppm range for Au+, Cu+2, and their respective DAT isomers were achieved. Time dependence was observed for some of the ECL reactions, including the Ru(III)–bipyridine model system, in which the ECL intensity grew markedly over several hours. No ECL enhancements over background were observed with two dinitrotoluene isomers or an aminonitrotoluene screened against the same set of 32 metals. This novel ECL approach may have applications in the determination of some aminoaromatics from degradation of explosives (e.g., TNT) as well as detection and quantitation of various transition metals in industrial wastewater streams and groundwater supplies. In terms of fundamental science, the present data are probably of interest as an example of size-dependent molecular recognition of metal ions which can be detected by ECL.  相似文献   

16.
A new electrochemical sensing platform was designed for sensitive detection of copper(II) (Cu2+) based on click conjugation of two short oligonucleotides by using methylene blue‐functionalized hairpin DNA as the template. The analyte (Cu2+) was in situ reduced to Cu+ by sodium ascorbate, which catalyzed the click conjugation between two single‐stranded oligonucleotides one was labelled with a 5′‐alkyne and the other with 3′‐azide group via the Cu+‐catalyzed azide‐alkyne cycloaddition. The newly formed long‐chain oligonucleotide induced the conformational change of hairpin DNA to open the hairpin, resulting in methylene blue far away from the electrode for the decrease of redox current. Under optimal conditions, the decrease in the electronic signal was directly proportional to target Cu2+ concentration, and allowed the detection of Cu2+ at a concentration as low as 1.23 nM. Our strategy also displayed high selectivity for Cu2+ against other metal ions owing to the highly specific Cu+‐catalyzed click chemistry reaction, and was applicable for monitoring of Cu2+ in drinking water with satisfactory results.  相似文献   

17.
Direct deposition of a MALDI sample onto a copper sample stage and irradiation with UV light (337 nm) produces copper adduct ions of both the matrix and analyte molecules. This technique for introducing Cu+ into the gas-phase avoids suppression of ion signal that accompanies addition of metal salts to the sample solution. We observe good correlation between the number of basic residues in peptides and the number of Cu+ ions that add to the peptide. For example, the peptide KRQHPG contains three basic residues and forms ions with up to three Cu+ adducts. Postsource decay experiments demonstrate that for arginine containing peptides, arginine anchors the Cu+ ion. That is, all metastable ions contain the arginine complexed to Cu+ and the only immonium ion observed is that of arginine–Cu+. In addition, preliminary calculations indicate that guanidine has the highest Cu+ ion affinity followed by histidine.  相似文献   

18.
Ability of aroylhydrazones to change conformation upon interaction with light makes them promising candidates for molecular switches. Isomerization can be controlled through complexation with selected metal ions which bind with different affinity. N′‐[1‐(2‐hydroxyphenyl)ethyliden]iso‐nicotinoylhydrazide (HAPI) is an example of a dual‐wavelenght photoswitching molecule, whose complexation with metal ions was recently experimentally investigated (Franks et al. J. Inorg. Chem. 2014, 53, 1397). In this contribution, complexes between HAPI and K+, Ca2+, Mn2+, Fe2+, Fe3+, Cu+, Cu2+, and Zn2+ ions were investigated using Density Functional Theory, Natural Bond Order analysis, and Quantum Theory of Atoms in Molecules. The most important parameters that determine complex stability are found to be ion radius and charge transferred from ligands to the ion: smaller ion radii and larger CT values characterize formation of more stable complexes. Our results explain experimentally observed effect of different metal ions on photoisomerization through determination of metal ion affinity (MIA): photoisomerization is inhibited if MIA exceeds 100 kcal/mol; for MIA between 50 and 100 kcal/mol excess of metal ions prevents isomerization, whereas in case of MIA below 50 kcal/mol metal ions have no influence on light–HAPI interaction. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Density functional theory (DFT) and time‐dependent density functional theory (TDDFT) calculations were performed with the basis sets 6‐31G for DFT and 6‐31G(d), 6‐31+G(d,p) for TDDFT on pure graphene nanoribbon (GNR) C30H14 and metal‐decorated C29H14‐X (MGNRs; X=Ni, Fe, Ti, Co+, Al+, and Cu+). The metal/carbon ratio (X:C 3.45 %) and the doping site were fixed. Electronic properties, that is, the dipole moment, binding energy, and HOMO–LUMO gaps, were calculated. The absorption and emission properties in the visible range (λ=400–720 nm) were determined. Optical gaps, absorption and emission wavelengths, oscillator strengths, and dominant transitions were calculated. Pure graphene was found to be the most stable form. However, of the MGNRs, C29H14?Co+ and C29H14?Al+ were found to be the most and least stable, respectively. All GNRs were found to have semiconducting nature. The optical absorption of pure graphene undergoes a shift on metal doping. Emission from the pure graphene followed Kasha′s rule, unlike the metal‐doped GNRs.  相似文献   

20.
《Electroanalysis》2005,17(4):327-333
Conducting polymers (CP) remain a promising material to construct stable potential all‐solid‐state ion‐selective potentiometric electrodes. The unique properties of poly(3,4‐ethylenedioxythiophene) doped with poly(4‐styrenesulfonate) ions, PEDOT‐PSS: high CP stability and affinity of doping anions towards Cu2+ ions, make it highly attractive for construction of all‐solid‐state copper(II)‐selective electrodes with outstanding selectivity. The additional benefits can arise from solution processability of commercially available PEDOT‐PSS system. This material was highly promising for a new sensor arrangement, i.e. to obtain disposable, planar and flexible all‐plastic Cu2+‐selective electrodes. These sensors can be obtained by casting a commercially available dispersion of PEDOT‐PSS (Baytron P) on a plastic, non‐conducting support material. The CP being both electrical lead and ion‐to‐electron transducer, was covered with plastic, solvent polymeric Cu2+ selective membrane. This extremely simple arrangement, after conditioning in dilute Cu2+ solution, was characterized with linear Nernstian responses within the activities range from: 0.1 to 10?4 M, followed by super‐Nernstian responses for lower activities. The latter result points to effective elimination of primary ions leakage from the plastic membrane / transducer phase and has resulted in significantly improved selectivities. Obtained log K values were equal to ?7.6 for Co2+, ?7.4 for Zn2+, ?7.2 for Ca2+ and ?6.8 for Na+, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号