首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
运用密度泛函理论和半经验分子轨道方法,对一系列高能杂环硝胺—反式-1,4,5,8-四硝基-1,4,5,8-四氮杂萘烷异构体的热解机理和稳定性进行了系统地计算研究。在B3LYP/6-31G**和PM3水平上,分别计算了标题物的化学键离解能(BDE)和热解反应活化能(Ea),并根据BDE和Ea数值考察了硝胺取代基对化合物稳定性和热解机理的影响;同时,还详细考察了BDE与Ea、化学键重叠布居数、前线轨道能级以及能隙之间的相关性。结果表明,由BDE、Ea和静态电子结构参数推断的标题物热稳定性和热解机理的结论基本是一致的,N-NO2键均裂是标题物的热解引发步骤,间位取代异构体较对位取代异构体稳定,而邻位取代的异构体稳定性最差。  相似文献   

2.
Metal string complexes contain a linear metal‐atom chain in which the metal centers are coordinated by four equatorial and two axial ligands. With a variety of transition‐metal elements and ligands, the structural framework drives the flourishing of molecular design and properties. The one‐dimensional configuration makes the compounds suitable for the studies of quantum transport across molecular junctions. In this study, we report the conductance measurements and transmission spectra of three trinickel metal strings, [Ni3(dpa)4(NCS)2] ( 1 ), [Ni3(dzp)4(NCS)2] ( 2 ), and [Ni3(dpa)4(CN)2] ( 3 ) (Hdpa = dipyridylamine, Hdzp, diazaphenoxazine) in which 1 is a prototypical compound, dzp of 2 represents an equatorial ligand more rigid than dpa of 1 , and ─CN is an axial ligand with a ligand‐field effect stronger than ─NCS of 1 . Measurement results of molecular junctions for 1 , 2 , and 3 are 2.69, 3.24, and 17.4 MΩ, respectively. The highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO–LUMO) gaps calculated by density functional theory in the gas phase for 1 , 2 , and 3 are about 2.65, 2.34, and 3.85 eV, respectively. Zero‐bias transmission spectra of 1 – 3 show that transmission peaks lie just above EFermi (the Fermi energy of the gold electrode), suggesting LUMO‐dominant transport pathways. The transmission peaks at EFermi are associated with LUMO+2 found in the gas phase. LUMOs in the free space are located at nearly 1 eV below EFermi. The shift of molecular orbitals from their isolated form and the alignment of LUMO+2 with the electrode Fermi level manifest the importance and significant of the electrodes' self‐energy on electron transport.  相似文献   

3.
Using the method of alternant molecular orbitals (AMO ), it is shown that the energies of AMOS (Ekσ) for an arbitrary heteronuclear alternant system, having a singlet ground state, are connected with the energies of MOS (ek(k )) obtained by means of the conventional Hartree–Fock (HF ) method (SCF -LCAO -MO -PPP ) via the formula: In the general case, the determination of the correlation corrections δi,kσ is connected with the solving of a complicated system of integral equations, which is considerably simplified if the Hubbard approximation is accepted for the electron interaction. The energy spectrum of a chain with two atoms in the elementary cell (AB)n is considered as an example. It is shown that if nontrivial solutions exist (δi,kσ ≠ 0), the correlation correction for AMOS of different spin are different (δi,kσ ≠ δi,kβ), from which it follows, that the width of the energy gap ΔE for AMOS with different spin is different: ΔE∞,α ≠ ΔE∞,β.  相似文献   

4.
It has been proved that triphenylamine (TPA) derivatives can be excellent candidates for hole‐transporting materials in organic light‐emitting diodes (OLEDs). To improve on the thermal and morphological stability, a fully diarymethylene‐bridged TPA derivative (FATPA) which has been proven to enhance electroluminescent (EL) efficiency was synthesized. On the basis of FATPA, two series of novel bridged TPA derivatives have been designed by using diarylmethylene (Series A) or dimethyfluorene (Series B) as the linkage between the ortho‐positions of the phenyl rings in this work (see Fig. 1 ). To reveal the relationships between electronic structures and photophysical properties of these novel functional materials, an in‐depth theoretical investigation was elaborated via quantum chemical calculations using the density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods. In addition, the feasibility of using these bridged TPA derivatives as host in the device of ITO/MoO3/NPB/mCP/host:Ir(ppy)3/TAZ/LiF/Al was also evaluated, which including the discussion to their energy levels match with adjacent layers and energy transfer from host to guest. These calculated results show that photophysical properties can be easily tuned by the introduction of various substituent groups into the bridged TPA derivatives, such as the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (LUMOs), the energies difference between the HOMOs and LUMOs (ΔH‐L), the lowest singlet (ES) and triplet (ET) excitation energies, ionization potentials (IPs), electron affinities (EAs), reorganization energies (λ) and the absorption and emission spectra, indicating that these bridged TPA derivatives have great potential applications for OLEDs. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

5.
The total energies and one-electron energies for first- and second-row atoms were calculated by using the Hartree–Fock and the Hartree–Fock-Slater Hamiltonian with Xα orbitals, uiexp); α was parametrized from EHFS exp) = Eexp. The EHF exp) total energies are always higher than the Hartree–Fock energies for the atoms. The relation of the calculated ionization potential to the experimental ionization potential depends on the α used to define ui(α), αexp, or αHF.  相似文献   

6.
Methods for evaluating the function Fm(t) occurring in molecular integrals over Gaussian-type orbitals are reviewed and extended. Formulas based on Bessel function and continued-fraction expansions are analyzed. The recommended evaluation procedures, embodied in a portable computer program, involve Padé approximations for various argument intervals and use recursion in m. The program is economical in storage requirements and faster than those in current use.  相似文献   

7.
Perfluorophthalocyanines incorporating three‐valent metals, namely In(Cl), Ga(Cl), and Al(Cl), have been synthesized and characterized. Thermogravimetric analysis revealed that these compounds exhibit outstanding thermal stability and a tendency to sublime at a temperature exceeding around 350 °C without thermal decomposition. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to probe the frontier orbital energy levels of these compounds in THF solution. All three compounds undergo three quasi‐reversible reductions with the first one leading to the formation of an anion radical, namely MPc?., as confirmed by spectroelectrochemistry. The compounds studied were intrinsically resistive to oxidation, which indicates that they are very good electron acceptors (n‐type materials). The HOMO–LUMO energy gaps (Eg) of the three compounds determined by UV/Vis spectroscopy were relatively unaffected by the three‐valent metals incorporated into the phthalocyanine macrocycle. Similarly, the energies of the HOMO (EHOMO) and LUMO (ELUMO) orbitals remained virtually unaffected by the three‐valent metals in the perfluorophthalocyanine. Importantly, all the perfluorophthalocyanines studied possess LUMO levels between ?4.76 and ?4.85 eV, which makes their reduced forms resistant to electron trapping by O2 and H2O. This property opens up the possibility for the fabrication of electronic devices operating under ambient conditions. All three compounds demonstrated very good photostability as solid thin films.  相似文献   

8.
The use of single‐molecule junctions for various functions constitutes a central goal of molecular electronics. The functional features and the efficiency of electron transport are dictated by the degree of energy‐level alignment (ELA), that is, the offset potential between the electrode Fermi level and the frontier molecular orbitals. Examples manifesting ELA are rare owing to experimental challenges and the large energy barriers of typical model compounds. In this work, single‐molecule junctions of organometallic compounds with five metal centers joined in a collinear fashion were analyzed. The single‐molecule iV scans could be conducted in a reliable manner, and the EFMO levels were electrochemically accessible. When the electrode Fermi level (EF) is close to the frontier orbitals (EFMO) of the bridging molecule, larger conductance was observed. The smaller |EF?EFMO| gap was also derived quantitatively, unambiguously confirming the ELA. The mechanism is described in terms of a two‐level model involving co‐tunneling and sequential tunneling processes.  相似文献   

9.
X‐ray fluorescence measurements for O‐containing [polyethylene oxide, polyvinyl alcohol, polyvinyl methyl ether], CO‐containing [polyvinyl methyl ketone, polyethylene terephthalate], N‐containing [poly‐4‐vinylpyridine (P4VP), polyaniline oligomer (PAO)], and S‐containing [polyphenylene sulfide] substances are presented. Carbon Kα X‐ray emission spectra (XES) and X‐ray photoelectron spectra (XPS) are compared with our DFT calculations performed with the Amsterdam density functional (ADF) program. The combined analysis of valence XPS and carbon Kα XES allows us to determine the individual contributions from pσ‐ and pπ‐bonding molecular orbitals of the polymers. The ΔSCF calculations yield the accurate C1s core‐electron binding energies (CEBEs) for all carbon sites of the organic compound. We calculate all CEBEs of the model molecules using the ΔE KS approach. Our simulated C1s photoelectron and C Kα emission spectra are in good agreement with our measurements. We also obtain WD (work function and the other energies) values for the polymers and PAO from the difference between calculated (gas‐phase) and measured (solid) CEBE values. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 162–172, 2007  相似文献   

10.
The electronic transport properties of the molecular device based on double‐cage fluorinated fullerene C20F18(NH)2C20F18 were studied theoretically. The results show that the device exhibits two negative differential resistance (NDR) peaks in its IV curve. The NDR peak under low bias voltage originates from the bias‐induced alignment of the molecular orbitals, and the conduction channel being suppressed at a certain bias voltage is the main reason for the NDR peak under a relatively high bias voltage.  相似文献   

11.
Quantitative nucleophilicity scales are fundamental to organic chemistry and are usually constructed on the basis of Mayr’s equation [log k=s(N+E)] by using benzhydrylium ions as reference electrophiles. Here an ab initio protocol was developed for the first time to predict the nucleophilicity parameters N of various π nucleophiles in CH2Cl2 through transition‐state calculations. The optimized theoretical model (BH&HLYP/6‐311++G(3df,2p)//B3LYP/6‐311+G(d,p)/PCM/UAHF) could predict the N values of structurally unrelated π nucleophiles within a precision of ca. 1.14 units and therefore may find applications for the prediction of nucleophilicity of compounds that are not readily amenable to experimental characterization. The success in predicting N parameters from first principles also allowed us to analyze in depth the electrostatic, steric, and solvation energies involved in electrophile–nucleophile reactions. We found that solvation does not play an important role in the validity of Mayr’s equation. On the other hand, the correlations of the E, N, and log k values with the energies of the frontier molecular orbitals indicated that electrostatic/charge‐transfer interactions play vital roles in Mayr’s equation. Surprising correlations observed between the electrophile–nucleophile C? C distances in the transition state, the activation energy barriers, and the E and N parameters indicate the importance of steric interactions in Mayr’s equation. A method is then proposed to separate the attraction and repulsion energies in the nucleophile–electrophile interaction. It was found that the attraction energy correlated with N+E, whereas the repulsion energy correlated to the s parameter.  相似文献   

12.
Quantum‐mechanical calculations were carried out at the MP4(SDQ)//MP2 level of theory to determine the energies and reaction mechanism for the carbonyl insertion reaction (second step in the olefin hydroformylation catalytic cycle), using a heterobimetallic Pt(SnCl3)(PH3)2(CO)(CH3) compound as a model catalytic species. The results show that this reaction proceeds through a three‐center transition state, with an activation energy of 26.4 kcal/mol, followed by an intramolecular rearrangement to the square‐planar cis‐Pt(SnCl3)(PH3)2(MeCO) metal–acyl product. Analysis of the nature of the bonds shows that there is a negligible participation of the tin d‐orbitals in the formation of the Pt Sn bond. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 668–674, 2000  相似文献   

13.
We introduce a pseudosymmetry analysis of molecular orbitals by means of the newly proposed irreducible representation measures. To do that we define first what we consider as molecular pseudosymmetry and the relationships of this concept with those of approximate symmetry and quasisymmetry. We develop a general algorithm to quantify the pseudosymmetry content of a given object within the framework of the finite group algebra. The obtained mathematical expressions are able to decompose molecular orbitals by means of the irreducible representations of any reference symmetry point group. The implementation and usefulness of the pseudosymmetry analysis of molecular orbitals is demonstrated in the study of σ and π orbitals in planar and nonplanar polycyclic aromatic hydrocarbons and the t2g and eg character of the d‐orbitals in the [FeH6]3? anion in its high spin state along the Bailar twist pathway. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Single-exponential Slater type orbitals of the form ψ1 = (1 + L1(r, θ) + L2(r, θ) +…?+ Ln(r, θ)) exp (? αr) are examined for their potential use as one-center molecular orbitals. These are then to be used as molecular fragments in a LCMO study. The system examined is HeH+ + with calculated energies and dipole moments being compared to the exact values. These functions behave best in the region of chemical interest (the bonding region) and thus demonstrate a possible usefulness in LCMO calculations and in the field of one-electron diatomics.  相似文献   

15.
Abstract— The energies of the lowest excited singlet, Es, and triplet, Et, states, and singlet-triplet splitting energies, ΔEs,t, were determined on 18 carcinogenic and 31 noncarcinogenic polycyclic aromatics. A highly significant correlation was found between carcinogenic activity and the energy of the excited singlet state. Compounds with an Es < 312 kJ/mol were 4.8 times more likely to be carcinogens than those compounds with Es 312 kJ/mol (P= 0.015). Compounds whose singlet energies fell within the narrow range of 297 ≤Es≤ 310 kJ/mol were 22.8 times more likely to be carcinogens than those compounds which fell outside this range (P= 0.00006). A significant correlation between carcinogenic activity and Et energies was not found, while the correlation involving ΔEs,t energies was intermediate between the Es and Et correlations. The phosphorescence lifetimes, τp, of the 18 carcinogenic aromatics and 27 of the noncarcinogenic aromatip were determined, and were shown not to be correlated with carcinogenic activity. When either the Et or ΔEs,t energies were plotted as a function of Es it was found that the carcinogens tended to form in an elliptical cluster. Compounds whose Es and Et energies placed them within the ellipse were 9.7 times more likely to be carcinogens than those compounds which fell outside the ellipse (P= 0.002), while with the Es, ΔEs,t ellipse, compounds which fell inside were 20.6 times more likely to be carcinogens than those which fell outside (P= 0.0004). Es, Et, ΔEs,t and τp values were also determined on 12 carcinogenic and 4 noncarcinogenic alkyl substituted benz[a]anthracenes. There was no significant difference between the carcinogens and noncarcinogens and the “elliptical” correlation predicted both the carcinogens and noncarcinogens to be carcinogenic. The results suggest that either some property(ies) of the lowest excited singlet state, but not its energy, or some molecular property(ies) which runs parallel to singlet state energies may be important in determining carcinogenic activity in polycyclic aromatics.  相似文献   

16.
A heteroleptic iron(II) complex [Fe(dcpp)(ddpd)]2+ with a strongly electron‐withdrawing ligand (dcpp, 2,6‐bis(2‐carboxypyridyl)pyridine) and a strongly electron‐donating tridentate tripyridine ligand (ddpd, N,N′‐dimethyl‐N,N′‐dipyridine‐2‐yl‐pyridine‐2,6‐diamine) is reported. Both ligands form six‐membered chelate rings with the iron center, inducing a strong ligand field. This results in a high‐energy, high‐spin state (5T2, (t2g)4(eg*)2) and a low‐spin ground state (1A1, (t2g)6(eg*)0). The intermediate triplet spin state (3T1, (t2g)5(eg*)1) is suggested to be between these states on the basis of the rapid dynamics after photoexcitation. The low‐energy π* orbitals of dcpp allow low‐energy MLCT absorption plus additional low‐energy LL′CT absorptions from ddpd to dcpp. The directional charge‐transfer character is probed by electrochemical and optical analyses, Mößbauer spectroscopy, and EPR spectroscopy of the adjacent redox states [Fe(dcpp)(ddpd)]3+ and [Fe(dcpp)(ddpd)]+, augmented by density functional calculations. The combined effect of push–pull substitution and the strong ligand field paves the way for long‐lived charge‐transfer states in iron(II) complexes.  相似文献   

17.
Electrostatic solvation free energies were computed for several small neutral bases and their conjugate acids using a continuum solvation model called the self-consistent isodensity polarizable continuum model (SCIPCM). The solvation energies were computed at the restricted Hartree–Fock (RHF) and second-order Møller–Plesset (MP2) levels of theory, as well as with the Becke3–Lee–Yang–Parr (B3LYP) density functional theory, using the standard 6–31G** Gaussian basis set. The RHF solvation energies are similar to those computed at the correlated MP2 and B3LYP theoretical levels. A model for computing protonation enthalpies for neutral bases in fluorosulfonic acid solvent leads to the equation ΔH(B)=−PA(B)+ΔEt(BH+)−ΔEt(B)+β, where PA(B) is the gas phase proton affinity for base B, ΔEt(BH+) is the SCIPCM solvation energy for the conjugate acid, and ΔEt(B) is the solvation energy for the base. A fit to experimental values of ΔH(B) for 10 neutral bases (H2O, MeOH, Me2O, H2S, MeSH, Me2S, NH3, MeNH2, Me2NH, and PH3) gives β=238.4±2.9 kcal/mol when ΔΔEt is computed using the 0.0004 e⋅bohr−3 isodensity surface for defining the solute cavity at the RHF/6–31G** level. The model predicts that for carbon monoxide ΔH(CO)=10 kcal/mol. Thus, protonation of CO is endothermic, and the conjugate acid HCO+ (formyl cation) behaves as a strong acid in fluorosulfonic acid. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 250–257, 1998  相似文献   

18.
We performed a comprehensive study of the size‐, shape‐, and composition‐dependent polarizabilities of SimCn (m, n = 1–4) clusters on the basis of the density‐functional‐based coupled perturbed Hartree–Fock calculations. We found better correlations between the polarizabilities and both the binding energies (Eb) and change in charge distribution (Δq) than the energy gaps. The α values exhibit overall decreasing and increasing trends with increases in the Eb and Δq values, respectively. For isomers with the same Eb values and different polarizabilities, Δq can well explain the difference in polarizabilities. The π‐electron delocalization effect is the best factor for understanding the shape‐dependence. For a given m/n value, the linear clusters have an obviously larger polarizability than both the prolate and compact clusters, irrespective of the cluster size. We fit a quantitative expression [α = A ? (A ? B) × exp(?k(m/n))] to describe the composition‐dependent polarizabilities. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
A new inequality and an approximate relation of incomplete Gamma function En(x) are derived in this paper. Applying both to simplify the error analysis on the recursive algorithm of En(x), we analytically derived a criterion about relative error. The criterion decides whether the forward recursive relation can be used to compute {En(x), n = 0, 1, ?, N} with an acceptable loss of significant figures. Further analytical exploration leads to another criterion that decides whether the group of En(x) can be evaluated with an acceptable absolute error by the same methods. Both criteria are not only superior to those given in previous work by other authors, but also strongly supported by our numerical experiments. A strategy is illustrated to explain how to apply both criteria to evaluate molecular integral over Slater-type orbitals. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
The effects of crosslinking polymer networks (PNs) on the molecular reorientation and electro‐optical properties of vertically aligned (VA) liquid crystal (LC) devices are investigated by applying an in‐plane switching (IPS) electric field. Through the polymerization process, crosslinking PNs are developed on the substrate surface, effectively increasing the anchoring energy and governing the LC molecular reorientation. With its stronger anchoring effect, the PNs cell shows good light transmittance and excellent vertical alignment quality, as compared to the pure LC cell. Furthermore, the alignment transformation and transmittance bounce resulting from the transient process of LC molecular reorientation are eliminated when the cell is operated at high voltages. The rising‐time (tr) and falling‐time (tf) responses of the PNs cell are significantly improved, and around 36% improvement in the optical switching response is obtained. In addition, the dynamic gray‐level tr and tf responses of the PNs cell are enhanced by around 55% and 42%, respectively, at a low driving voltage (~12 V). This developed VA‐IPS LC/PNs cell benefits not only the LC molecular alignment but also the electro‐optical performance. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1123–1130  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号