首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The optimality of MO basis sets of Gaussian functions, when constructed from AO basis sets optimized for the neutral atom or for atom ions, is investigated. A formal charge parameter Q is defined and used to adjust the AO basis sets to the molecular environment, by virtue of a simple quadratic expression. Calculations on a series of C1 hydrocarbons (CH2, CH3, CH3+, CH3?, CH4) using 3G basis sets indicate considerable variations in the optimum Q value with the molecular species. The proposed method offers a simple alternative technique to a full molecular basis set optimization.  相似文献   

2.
Ab inito molecular orbital calculations of the phosphorus- and sulfur-containing series PH2X, PH3X+, SHX, and SH2X+ (X = H, CH3, NH2, OH, F) have been carried out over a range of Gaussian basis sets and the results (optimized geometrical structures, relative energies, and electron distributions) critically compared. As in first-row molecules there are large discrepancies between substituent interaction energies at different basis set levels, particularly in electron-rich molecules; use of basis sets lower than the supplemented 6-31G basis incurs the risk of obtaining substituent stabilizations with large errors, including the wrong sign. Only a small part of the discrepancies is accounted for by structural differences between the optimized geometries. Supplementation of low level basis sets by d functions frequently leads to exaggerated stabilization energies for π-donor substituents. Poor performance also results from the use of split valence basis sets in which the valence shell electron density is too heavily concentrated in diffuse component of the valence shell functions, again likely to occur in electron-rich molecules. Isodesmic reaction energies are much less sensitive to basis set variation, but d function supplementation is necessary to achieve reliable results, suggesting a marginal valence role for d functions, not merely polarization of the bonding density. Optimized molecular geometries are relatively insensitive to basis set and electron population analysis data, for better-than-minimal bases, are uniform to an unexpected degree.  相似文献   

3.
Accurate Gaussian basis sets (18s for Li and Be and 20s11p for the atoms from B to Ne) for the first‐row atoms, generated with an improved generator coordinate Hartree–Fock method, were contracted and enriched with polarization functions. These basis sets were tested for B2, C2, BeO, CN, LiF, N2, CO, BF, NO+, O2, and F2. At the Hartree–Fock (HP), second‐order Møller–Plesset (MP2), fourth‐order Møller–Plesset (MP4), and density functional theory (DFT) levels, the dipole moments, bond lengths, and harmonic vibrational frequencies were studied, and at the MP2, MP4, and DFT levels, the dissociation energies were evaluated and compared with the corresponding experimental values and with values obtained using other contracted Gaussian basis sets and numerical HF calculations. For all diatomic molecules studied, the differences between our total energies, obtained with the largest contracted basis set [6s5p3d1f], and those calculated with the numerical HF methods were always less than 3.2 mhartree. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 15–23, 2000  相似文献   

4.
Accurate relativistic adapted Gaussian basis sets (RAGBSs) for 87Fr up to 118Uuo atoms without variational prolapse were developed here with the use of a polynomial version of the Generator Coordinate Dirac‐Fock method. Two finite nuclear models have been used, the Gaussian and uniform sphere models. The largest RAGBS error, with respect to numerical Dirac‐Fock results, is 15.4 miliHartree for Ununoctium with a basis set size of 33s30p19d14f functions. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
6.
7.
Size and shape parameters for the core, bonding, and lone electron pairs of the ten-electron hydrides (CH4, NH3, H2O, HF) were determined from ab initio MO wave functions using various Gaussian basis sets. The fundamental features of approximate electron pair loge representation are somewhat more sensitive to the quality of the basis functions than the molecular total energy. The total size of the molecular electron distribution is less affected by basis set variations than its components: the core, bonding, and lone pair sizes. There is an apparent tendency to “preserve” the total size of molecular distribution.  相似文献   

8.
This investigation is a continuation of a study on the optimality of MO basis sets of Gaussian functions, when constructed from AO basis sets optimized for the neutral atom or for ions. A formal charge parameter Q is used to adjust AO basis sets to the molecular environment, by virtue of a simple quadratic equation. Calculations are performed on a series of seven C2 hydrocarbons (C2H2, C2H4, C2H6, C2H3+ (open), C2H3+ (bridged), C2H5+ (bridged), and C2H4? radical anion). A simple rule is formulated to give approximate values of the charge parameter Q.  相似文献   

9.
We investigate the optimization of Gaussian basis sets for relativistic calculations within the framework of the restricted Dirac-Hartree-Fock (DHF) method for atoms. We compare results for Rn of nonrelativistic and relativistic basis set optimizations with a finite nuclear-size. Optimization of separate sets for each spin-orbit component shows that the basis set demands for the lower j component are greater than for the higher j component. In particular, the p 1/2 set requires almost as many functions as the s 1/2 set. This implies that for the development of basis sets for heavy atoms, the symmetry type for which a given number of functions is selected should be based on j, not on l, as has been the case in most molecular calculations performed to date.  相似文献   

10.
The prolapse-free relativistic adapted Gaussian basis sets (RAGBSs), developed by our research group on the basis of the four-component approach, are used for the first time in Douglas–Kroll–Hess 2nd order scalar relativistic calculations (DKH2) of simple diatomic molecules containing Hydrogen and the halogens from Fluorine up to Iodine: HX and X2, where X = F, Cl, Br, and I. To this end, the RAGBSs were contracted with the general contraction scheme to triple-, quadruple-, and quintuple-zeta sets. Polarization functions were also added to the basis sets by optimization with the configuration interaction method including single and double excitations into the DKH2 environment, DKH2-CISD. The molecular properties were then calculated with the coupled cluster electronic correlation treatment and the DKH2 scalar relativistic method, DKH2-CCSD(T), and indicated that our RAGBSs should be contracted as quadruple-zeta basis sets. The results achieved with the DKH2-CCSD(T) calculations and the selected quadruple-zeta RAGBSs are able to reproduce the experimental data of equilibrium distances, dissociation energies, and harmonic vibrational frequencies with root-mean-square (rms) errors of 0.015 Å, 3.6 kcal mol−1, and 21.7 cm−1, respectively.  相似文献   

11.
The completeness criteria for the basis set of explicitly correlated Gaussian-type geminals adapted to C∞v symmetry are given. Specifically, we show that any pair function of Σ+ symmetry can be expanded in terms of products involving two spherical Gaussian orbitals located on the internuclear axis and a Gaussian correlating factor with a positive exponent. Pair functions corresponding to other irreducible representations of C∞v can be expressed as linear combinations of products of a σ+ function and an angular factor depending on the azimuthal angles. The minimal set of the angular factors needed for completeness is given. These factors are relevant also for other explicitly correlated bases. © 1997 John Wiley & Sons, Inc.  相似文献   

12.
Relativistic single‐family exponent Gaussian basis sets for molecular calculations are presented for the 80 atoms 1H through 80Hg. The exponent parameters shared by Gaussian basis functions of all symmetry species are fully optimized. Two nucleus models of uniformly charged sphere and Gaussian charge distribution are considered and two kinds of basis sets are generated accordingly. The total energy errors are less than 2 mhartree in any atoms. Some of the present basis sets include small variational collapse (or prolapse), but test calculations show that they could be reliably applied to molecular calculations. © 2005 Wiley Periodicals, Inc. J Comput Chem 27: 48–52, 2006  相似文献   

13.
New adjusted Gaussian basis sets are proposed for first and second rows elements (H, B, C, N, O, F, Si, P, S, and Cl) with the purpose of calculating linear and mainly nonlinear optical (L–NLO) properties for molecules. These basis sets are new generation of Thakkar‐DZ basis sets, which were recontracted and augmented with diffuse and polarization extrabasis functions. Atomic energy and polarizability were used as reference data for fitting the basis sets, which were further applied for prediction of L–NLO properties of diatomic, H2, N2, F2, Cl2, BH, BF, BCl, HF, HCl, CO, CS, SiO, PN, and polyatomic, CH4, SiH4, H2O, H2S, NH3, PH3, OCS, NNO, and HCN molecules. The results are satisfactory for all electric properties tested; dipole moment (µ), polarizability (α), and first hyperpolarizability (β), with an affordable computational cost. Three new basis sets are presented and called as NLO‐I (ADZP), NLO‐II (DZP), and NLO‐III (VDZP). The NLO‐III is the best choice to predict L–NLO properties of large molecular systems, because it presents a balance between computational cost and accuracy. The average errors for β at B3LYP/NLO‐III level were of 8% for diatomic molecules and 14% for polyatomic molecules that are within the experimental uncertainty. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
We present a set of effective core potential (ECP) basis sets for rhodium atoms which are of reasonable size for use in electronic structure calculations. In these ECP basis sets, the Los Alamos ECP is used to simulate the effect of the core electrons while an optimized set of Gaussian functions, which includes polarization and diffuse functions, is used to describe the valence electrons. These basis sets were optimized to reproduce the ionization energy and electron affinity of atomic rhodium. They were also tested by computing the electronic ground state geometry and harmonic frequencies of [Rh(CO)2μ‐Cl]2, Rh(CO)2ClPy, and RhCO (neutral and its positive, and negative ions) as well as the enthalpy of the reaction of [Rh(CO)2μ‐Cl]2 with pyridine (Py) to give Rh(CO)2ClPy, at different levels of theory. Good agreement with experimental values was obtained. Although the number of basis functions used in our ECP basis sets is smaller than those of other ECP basis sets of comparable quality, we show that the newly developed ECP basis sets provide the flexibility and precision required to reproduce a wide range of chemical and physical properties of rhodium compounds. Therefore, we recommend the use of these compact yet accurate ECP basis sets for electronic structure calculations on molecules involving rhodium atoms. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Contracted basis sets of double zeta (DZ) quality for the atoms from K to Kr are presented. They were determined from fully optimized basis sets of primitive Gaussian-type functions generated in atomic Hartree-Fock calculations. Sets of Gaussian polarization functions optimized at the Möller-Plesset second-order level were added to the DZ basis set. This extends earlier work on segmented contracted DZ basis set for atoms H-Ar. From this set, using the BP86 nonhybrid and B3LYP hybrid functionals, dissociation energy, geometric parameters, harmonic vibrational frequency, and electric dipole moment of a set of molecules were calculated and compared with results obtained with other basis sets and with experimental data reported in the literature. In addition, 57Fe and 77Se nuclear magnetic resonance chemical shifts in Fe(C5H5)2, H2Se, and CSe2 were calculated using density functional theory and gauge-including atomic orbitals and, then, compared with theoretical and experimental values previously published in the literature. Except for chemical shift, one verifies that our results give the best agreement with experimental and benchmark values. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2008  相似文献   

16.
Using an ab initio method, the potential energy has been calculated for the 29 lowest molecular states of symmetries 2Σ+, 2Π, 2Δ for the molecular ion RbH+. The calculation is based on nonempirical pseudopotentials and parameterized ?‐dependent polarization potentials. Gaussian basis sets have been used for both atoms. The spectroscopic constants for 18 electronic sates have been calculated by fitting the calculated energy values to a polynomial in terms of the internuclear distance R. Through the canonical functions approach the eigenvalue Ev, the abscissas of the corresponding turning points (Rmin and Rmax) and the rotational constants Bv have been calculated up to 24 vibrational levels for the considered bound states. The comparison of the present results with those available in literature shows a very good agreement. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

17.
18.
The 6-31G ++ basis set is described. This basis set is very similar to the existing 6-31G ** set but is somewhat smaller through the use of five (rather than six) second-order Gaussians (d functions) and has polarization function exponents optimized for correlated rather than Hartree–Fock wavefunctions. The performance of 6-31G ++ is compared with that of the 6-31G ** and 6-31G ** basis sets through calculation of the geometries and atomization energies for the set of molecules LiH, FH, H2O, NH3, CH4, N2, CO, HCN, and HCCH.  相似文献   

19.
Nonempirical quantum chemical method Hartree–Fock–Roothan LCAO SCF MO in a two-exponent Dunning basis with the use of an extended set of Gaussian functions by Huzinaga–Dunning with consideration of electron correlation according to the Meller–Plesset theory of excitations of the second order was used to study monohydrates of Li+, Na+, K+, and HCOO? ions. The indicated basis was supplemented with polarization functions of d-type on the O atom and of p-type on the hydrogen atom as well as with diffusion functions of p-type on the oxygen atom. It has been found that binding energies of the water molecule with Li+, Na+ appeared to be higher and with K+ lower than with HCOO? · H2O. Potential curve shapes of K+ + H2O and HCOO? + H2O reactions are shown to be similar. The molecular mechanism of K+ channel selectivity of an excitable membrane is explained on the basis of the obtained calculations.  相似文献   

20.
By applying the powerful direct optimization technique of conjugate gradients as adapted for the optimization of an open shell energy functional, a uniformly balanced (15s 10p) Gaussian basis set was obtained for the silicon atom. The quality of this basis set, as defined in terms of “exponent forces” or energy gradient |g|, is compatible with the quality of suitably chosen (10s 5p) carbon and (5s) hydrogen basis sets. Contractions better than double zeta were determined for all three bases of Si, C, and H. Using the primitive and contracted bases, ab initio SCF MO calculations were carried out on molecules of SiH4, CH4, and H2. Some of the computed results obtained for H2C = SiH2 are also included as an illustration for organo-silicon compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号