首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of a reactive dye, Reactive Yellow 84, from aqueous solution onto synthesized hydroxyapatite was investigated. The experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, absorbent dosage, initial dye concentration, temperature and pH of dye solution. The experimental results show that the amount of dye adsorbed increases with an increase in the amount of hydroxyapatite. The maximum adsorption occurred at the pH value of 5. The equilibrium uptake was increased with an increase in the initial dye concentration in solution. The experimental isotherm data were analyzed using Langmuir isotherm equation. The maximum monolayer adsorption capacity was 50.25 mg/g. The adsorption has a low temperature dependency and was endothermic in nature with an enthalpy of adsorption of 2.17 kJ mol−1.  相似文献   

2.
Photocatalytic degradation of the reactive triazine dyes Reactive Yellow 84 (RY 84), Reactive Red 120 (RR 120), and Reactive Blue 160 (RB 160) on anatase phase N-doped TiO2 in the presence of natural sunlight has been carried out in this work. The effect of experimental parameters like initial pH and concentration of dye solution and dosage of the catalyst on photocatalytic degradation have also been investigated. Adsorption of dyes on N-doped TiO2 was studied prior to photocatalytic studies. The studies show that the adsorption of dyes on N-doped TiO2 was high at pH 3 and follows the Langmuir adsorption isotherm. The Langmuir monolayer adsorption capacity of dyes on N-doped TiO2 was 39.5, 86.0, and 96.3 mg g?1 for RY 84, RR 120, and RB 160, respectively. The photocatalytic degradation of the dyes follows pseudo first-order kinetics and the rate constant values are higher for N-doped TiO2 when compared with that of undoped TiO2. Moreover, the degradation of RY 84 on N-doped TiO2 in sunlight was faster than the commercial Aeroxide® P25. However, the P25 has shown higher photocatalytic activity for the other two dyes, RR 120 and RB 160. The COD of 50 mg l?1 Reactive Yellow-84, RR 120 and RB 160 was reduced by 65.1, 73.1, and 69.6 %, respectively, upon irradiation of sunlight for 3 h in the presence of N-doped TiO2. The photocatalyst shows low activity for the degradation of RY 84 dye, when its concentration was above 50 mg l?1, due to the strong absorption of photons in the wavelength range 200–400 nm by the dye solution. LC–MS analysis shows the presence of some triazine compounds and formimidamide derivatives in the dye solutions after 3 h solar light irradiation in the presence of N-doped TiO2.  相似文献   

3.
The main aim of this work is to discriminate the closely related adsorption and catalytic degradation processes that occur during a photocatalytic reaction. Very high-surface-area TiO2 and Pd-doped TiO2 were synthesized by microwave-assisted hydrothermal synthesis and used for degradation of methylene blue as a model pollutant dye. Thorough structural, morphological, and surface analyses of the synthesized catalysts were conducted to investigate key material properties that influence adsorption and catalytic performance. The adsorption capacity of the catalysts was determined by fitting adsorption data using the Langmuir isotherm model, and the photocatalytic activity of the synthesized samples was evaluated by periodically measuring the concentration of methylene blue as it was photocatalytically degraded under ultraviolet (UV) light. The results indicated that noble-metal incorporation compromised adsorption but favored catalytic performance.  相似文献   

4.
In this research, the efficiency of ZnO and TiO2 was compared by photocatalytic degradation of Congo red azo dye. The effects of some parameters such as pH, dye concentration and irradiation time on the degradation rate of dye solution were also examined. In addition, the aggregation feature of Congo red was studied by using UV-Vis spectroscopy techniques. The recovery of the ZnO catalyst was also investigated.  相似文献   

5.
The feasibility and performance of photocatalytic degradation and toxicity reduction of textile dye (Acid Blue 25) have been studied at pilot scale in an immobilized titania nanoparticle photocatalytic reactor. UV-Vis, Ion Chromatography (IC) and chemical oxygen demand (COD) analyses were employed to obtain the details of the photocatalytic dye degradation. The effects of operational parameters such as H2O2, pH and dye concentration on the photocatalytic degradation of Acid Blue 25 were investigated. The aliphatic carboxylic acid intermediates and inorganic anions generated during the dye degradation process were analyzed. Daphnia magna bioassay has been used to test the progress of toxicity during the treatment process. Total disappearance of dye was attained. During the photocatalytic treatment process, the residual acute toxicity was reduced. The results showed that immobilized titania nanophotocatalysis capable to degradation and toxicity reduction of acid dye textile wastewater.  相似文献   

6.
Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.  相似文献   

7.
Quartzite obtained from local source was investigated for the removal of anionic dye congo red (CR) and cationic dye malachite green (MG) as an adsorbent from aqueous solution in batch experiment. The adsorption process was studied as a function of dye concentration, contact time, pH and temperature. Adsorption process was described well by Langmuir and Freundlich isotherms. The adsorption capacity remained 666.7 mg/g for CR dye and 348.125 mg/g for MG dye. Data was analyzed thermodynamically, ΔH0 and ΔG0 values proved that adsorption of CR and MG is an endothermic and spontaneous process. Adsorption data fitted best in the pseudo-first order kinetic model. The adsorption data proved that quartzite exhibits the best adsorption capacity and can be utilized for the removal of anionic and cationic dyes.  相似文献   

8.
Research on photocatalytic degradation rate of azo dyes using nano-strontium titanate in photocatalysis process was the main goal of present study. In this regard, the influence of the main operating parameters such a photocatalyst concentration, dye concentration, temperature, pH and the presence of hydrogen peroxide upon dye removal rate under UV irradiation was studied. The absorbance of samples was measured by a UV–Vis spectrophotometer. The structure and morphology of nano-powder were investigated using scanning electron microscopy and crystalline structure by X-ray diffraction spectroscopy. The results reveal that nano-strontium titanate has high and significant photocatalytic activity and in comparison with nano-titanium dioxide was superior photocatalyst.  相似文献   

9.
Zeolite-based photocatalysts were prepared by the sol-gel and deposition methods. The photocatalysts were characterised by X-ray diffraction, nitrogen adsorption-desorption isotherms, FTIR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectrometry. The activity of the prepared photocatalysts was evaluated by the UV-induced degradation of acid blue 92, a textile dye in common use. The effect of various parameters, such as catalyst concentration, initial dye concentration, thiosulphate concentration and pH, on the rate and efficiency of the photocatalytic degradation of acid blue 92 was investigated. The results showed that each parameter influenced the degradation rate and efficiency in a particular way. It was also found that, under optimised conditions, Ag/AgBr/TiO2/zeolite exhibited the highest photocatalytic performance. A comparison of catalytic activity when exposed to visible light under the same conditions showed that the photocatalysts containing AgBr had the highest activity.  相似文献   

10.
The mesoporous carbon CMK-3 adsorbent was prepared, characterized, and used for the removal of anionic methyl orange dye from aqueous solution. Adsorption experiments were carried out as batch studies at different contact time, pH, initial dye concentration, and salt concentration. The dye adsorption equilibrium was rapidly attained after 60 min of contact time. Removal of dye in acidic solutions was better than in basic solutions. The adsorption of dye increased with increasing initial dye concentration and salt concentration. The equilibrium data were analyzed by the Langmuir and Freundlich models, which revealed that Langmuir model was more suitable to describe the methyl orange adsorption than Freundlich model. Experimental data were analyzed using pseudo-first-order and pseudo-second-order kinetic models. It was found that kinetics followed a pseudo-second-order equation. Thermodynamic study showed that the adsorption was a spontaneous and exothermic process.  相似文献   

11.
偶氮染料吸附和光催化氧化动力学   总被引:32,自引:0,他引:32  
以甲基橙和酸性大红两种偶氮染料为模拟污染有机物,对它们的暗吸附和光催化氧化行为进行研究.实验结果表明,两种偶氮染料的吸附受溶液酸碱度影响很大,酸性(pH=3)条件下,两种染料吸附量都很大,酸性大红吸附量更大;近中性(pH≈6)时两种染料的吸附显著减少;碱性(pH=9)条件下两种染料不发生吸附.光催化反应结果显示,碱性条件或酸性条件下两种染料降解速度都很快.说明在不同酸碱度条件下,光催化反应按不同机理进行.酸性条件下,反应在催化剂表面进行,在碱性介质中,光催化氧化在溶液中进行.提出了一个碱性条件下的动力学方程,经过进一步简化,可以得到表观一级方程,形式上和准一级L-H方程十分相似,但其含义不同.  相似文献   

12.
The photocatalytic degradation of two commercial textile azo dyes, namely C.I Reactive Black 5 and C.I Reactive Red 239, has been studied. TiO(2) P25 Degussa was used as catalyst and photodegradation was carried out in aqueous solution under artificial irradiation with a 125 W mercury vapor lamp. The effects of the amount of TiO(2) used, UV-light irradiation time, pH of the solution under treatment, initial concentration of the azo dye and addition of different concentrations of hydrogen peroxide were investigated. The effect of the simultaneous photodegradation of the two azo dyes was also investigated and we observed that the degradation rates achieved in mono and bi-component systems were identical. The repeatability of photocatalytic activity of the photocatalyst was also tested. After five cycles of TiO(2) reuse the rate of colour lost was still 77% of the initial rate. The degradation was followed monitoring the change of azo dye concentration by UV-Vis spectroscopy. Results show that the use of an efficient photocatalyst and the adequate selection of optimal operational parameters may easily lead to a complete decolorization of the aqueous solutions of both azo dyes.  相似文献   

13.
Anatase-type TiO2 single nanocrystals with boatlike, comblike, sheetlike, leaflike, quadrate, rhombic, and wirelike particle morphologies were prepared by hydrothermal treatment of a layered titanate nanosheet colloidal solution. The formation reactions and surface properties of the TiO2 nanocrystals were investigated using XRD, TEM, TG-DTA analyses, and measurements of BET specific surface area, photocatalytic activity, and ruthenium dye (N719) adsorption. The crystal morphology can be controlled by reaction temperature, pH value of reaction solution, and exfoliating agent. The titanate nanosheets were transformed to the TiO2 nanocrystals by two types of reactions. One is an in situ topotactic structural transformation reaction, and the other is a dissolution-deposition reaction on the surface. The anatase nanocrystals formed by the in situ topotactic structural transformation reaction retain the sheetlike particle morphology of the precursor, and they preferentially expose the (010) plane of anatase structure. The crystal surface of anatase nanocrystals prepared in this study showed higher photocatalytic activity and higher ruthenium dye adsorption capacity than did the Ishihara ST-01 sample, a standard anatase nanocrystal sample. The results indicated the (010) plane of the anatase structure has high photocatalytic activity and high ruthenium dye adsorption ability.  相似文献   

14.
The potential of using rice straw fly ash (RSFA) as low-cost adsorbents for the removal of hazardous azorhodanine (AR) dye from aqueous solution was investigated. The effects of different variables in the batch method as a function of solution pH, contact time, concentration of adsorbate, adsorbent dosage, and temperature were investigated, and optimal experimental conditions were ascertained: 0.05 g for initial dye concentration of 20–100 mg/L at pH 2. The experimental equilibrium data were tested by the isotherm models, namely the Langmuir and Freundlich adsorption and the isotherm constants were determined. The kinetic models, pseudo-first-order and pseudo-second-order, were employed to analyze the kinetic data. The activation energy of adsorption was also evaluated and found to be +10.89 kJ.mol?1, indicating that the adsorption is physisorption. Various thermodynamic parameters, such as Gibbs free energy, entropy, and enthalpy of the ongoing adsorption process, have been calculated and found to be spontaneous and exothermic, respectively.  相似文献   

15.
Bottom ash, a power plant waste, and de-oiled soya, an agricultural waste material, were employed for the removal and recovery of Quinoline Yellow, a water-soluble dye. Characterization of adsorbent materials was made by their infrared and differential thermal analysis curves. Along with batch adsorption studies, which involve effect of pH, adsorbate concentration, sieve size, adsorbent dosage, contact time, temperature, etc., kinetic studies and column operations were also made to remove the dye from wastewater. On the basis of kinetic studies, specific rate constants involved in the processes were calculated and first-order adsorption kinetics was observed in both the cases. The paper also incorporates Langmuir and Freundlich adsorption isotherm models, which are used to calculate thermodynamic parameters and also to suggest a plausible mechanism of the ongoing adsorption processes. Fixed bed columns were prepared for both the adsorbents and bulk removal of the dye was achieved by eluting aqueous solution of the dye and saturation factor for both columns were evaluated. Dilute NaOH solution was then percolated through the exhausted columns to recover the adsorbed dye.  相似文献   

16.
In this work the activated pine cone was investigated as adsorbent to remove Remazol Brilliant Blue R from aqueous solution. The effects of various experimental parameters such as initial dye concentration, contact time, temperature, adsorbent dose and pH were examined. The adsorption of Remazol Brilliant Blue R from aqueous solution was increased with the increase in initial dye concentration, contact time, temperature, adsorbent dose but decreased with the increase in the pH. The results in this study indicated that the activated pine cone was an attractive candidate for removing Remazol Brilliant Blue R.  相似文献   

17.
The photocatalytic degradation of a genotoxic azo dye Acid Violet 7 (AV 7) using ZnO as a photocatalyst in aqueous solution has been investigated under UV irradiation. The degradation is higher with UV/ZnO process than with UV/TiO(2)-P25 process at pH 9. The effects of different parameters such as pH of the solution, amount of catalyst, initial dye concentration and the influence of cations, anions and oxidants on photodegradation of AV 7 were analyzed. Addition of oxidants except H(2)O(2) has no significant effect on degradation. The degradation of AV 7 follows pseudo-first order kinetics according to the Langmuir-Hinshelwood model. The degradation of AV 7 has also been confirmed by COD and CV measurements.  相似文献   

18.
Despite photocatalytic degradation is studied generally focusing the catalyst, its interaction with the contaminant molecule plays a fundamental role in the efficiency of that process. Then, we proposed a comparative study about the photodegradation of two well‐known dyes, with different acidity/basicity – Methylene Blue (MB) and Rhodamine B (RhB), catalyzed by TiO2 nanoparticles, varying both dye and photocatalyst concentrations. The results showed that the amphoteric character of MB molecules, even in a range of concentration of 5.0–10.0 mg L?1, did not imply in pH variation in solution. Therefore, it did not affect the colloidal behavior of TiO2 nanoparticles, independent of the relative dye/catalyst concentration. The acid–base character of RhB influenced the resultant pH of the solution, implicating in different colloidal behavior of the nanoparticles and consequently, in different degradation conditions according to dye concentration. As the isoelectric point of TiO2 is between the pH range of the RhB solutions used in this study, from 1.0 to 7.5 mg L?1, the resultant pH was the key factor for degradation conditions, from a well dispersed to an agglomerated suspension.  相似文献   

19.
《Arabian Journal of Chemistry》2020,13(11):8262-8270
The Zn0.3Al0.4O4.5 nanoparticles (ZnAlONPs) with size of 70–90 nm are used as an efficient photocatalyst for formaldehyde (HCHO) degradation and effective adsorbent for the removal of eriochrome black-T (EBT) dye from synthetic aqueous solution. Degradation of HCHO reactions were studied using TiO2 (homemade), TiO2 (P-25) and ZnAlONPs by irradiating under 18 W daylight lamp source for photocatalytic degradation. The HCHO degradation rate is about 67, 76 and 89% for TiO2 (homemade), TiO2 (P25) and ZnAlONPs during 2 h reaction, respectively at initial formaldehyde gas concentration of 20 ppm. Maximum adsorption capacity was optimized by changing the parameters such as pH, EBT concentration and adsorbent dosage. A  200 mg of ZnAlONPs are useable for quick removal of EBT (>95%). Langmuir isotherm model showed a maximum adsorption capacity of 90.90 mgg−1. The ZnAlONPs could be successfully reused upto 5th adsorption/desorption cycle for EBT dye removal from water samples.  相似文献   

20.
In this study, the adsorption of an industrial dye Supranol Yellow 4GL onto Cetyltrimethylammonium-bentonite (CTAB-bentonite) is investigated. The organobentonite is synthesised by exchanging cetyltrimethylammonium cations (CTAB) with inorganic ions on the surface of bentonite. The adsorption of Supranol Yellow 4GL onto organobentonite is found to be maximum when the concentration of CTAB exchanged is 100% according to the cation exchange capacity of the clay (CEC). The modification of organobentonite is examined using XRD and FTIR techniques. The effect of the process parameters such as: contact time, adsorbate concentration, adsorbent dose, pH and temperature are reported. Nearly 1200 seconds of contact time are found to be sufficient for the adsorption to reach equilibrium. The pseudo second order model is used to describe the kinetic data, and the rate constant is therefore evaluated. The dye adsorption to organobentonite is characterized by monolayer isotherm and caused by adsorption with relatively strong uptake. The Langmuir and Freundlich models adsorption are applied to describe the isotherm equilibrium and to determine its constants. The Langmuir and Freundlich models agree well with the experimental data with a adsorption capacity of 0.5 g of dye per g of organobentonite. A better fixation was obtained at acidic pH. The effect of temperature on the adsorption of dye has been also studied and the thermodynamic parameters ΔH, ΔS, ΔG, were determined. Organobentonite is found to be effective for removing Supranol Yellow 4GL dye from wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号