首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 259 毫秒
1.
A magnetic solid-phase extraction (MSPE) method coupled to high performance liquid chromatography with UV (HPLC-UV) was proposed for the determination of organophosphorus pesticides (OPPs) at trace levels in environmental water samples. The ternary nanocomposite of graphene-carbon nanotube-Fe3O4 (G-CNT-Fe3O4) has been synthesised via a simple solvothermal process and the resultant material was characterised by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Significant factors that affect the extraction efficiency, such as amount of magnetic nanocomposite, extraction time, ionic strength, solution pH and desorption conditions were carefully investigated. The results demonstrated that the proposed method had a wide dynamic linear range (0.005–200 ng mL?1), good linearity (R2 = 0.9955–0.9996) and low detection limits (1.4–11 pg mL?1). High enrichment factors were achieved ranging from 930 to 1510. The results show that the developed method is suitable for trace level monitoring of OPPs in environmental water samples.  相似文献   

2.
A novel Fe3O4/graphene/polypyrrole nanocomposite has been successfully synthesised via a simple chemical method and applied as a new magnetic solid-phase extraction (MSPE) sorbent for the separation and pre-concentration of trace amounts of Pt (IV) in environmental samples followed by flame atomic absorption spectrometric (FAAS) detection. The nanocomposite has been characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. Seven important parameters, affecting the extraction efficiency of Pt (IV), including pH, adsorption time, desorption solvent type and concentration, desorption time, elution volume and sample volume, were investigated. Under the optimised conditions, the calibration graph was linear in the range of 50–1500 μg L?1 (R = 0.993). The detection limit and pre-concentration factor (PF) for Pt (IV) were found to be 16 μg L?1 and 112.5, respectively. Under the optimised solid-phase extraction (SPE) conditions, the adsorption isotherm and the adsorption capacity of the nanocomposite for Pt (IV) were studied. Pt (IV) adsorption equilibrium data were fitted well to the Langmuir isotherm and the maximum adsorption capacity of the magnetic sorbent was calculated from the Langmuir isotherm model as 416.7 mg g?1. The precision of the method was studied as intraday and interday variations. A relative standard deviation percentage (RSD%) value less than 3.0 indicates that the method is precise. Also, the accuracy of the method was tested by the analysis of the standard reference material (NIST SRM 2556) and by recovery measurements on spiked real samples. It was also shown that the optimised method was suitable for the analysis of trace amounts of Pt (IV) in roadside soil, tap water and wastewater samples.  相似文献   

3.
《Analytical letters》2012,45(7):1210-1223
A new magnetic adsorbent, 2,2′-thiodiethanethiol grafted with tetraethyl orthosilicate modified Fe3O4 nanoparticles, was developed for the separation and preconcentration of Hg, Pb, and Cd in environmental and food samples. The concentrations of Pb and Cd were determined by inductively coupled plasma–optical emission spectrometry; Hg was determined by cold vapor atomic absorption spectrometry. A comprehensive study on the factors affecting the extraction and desorption efficiencies was performed. Under the optimized conditions, the method was linear in the 0.01–750 ng mL?1 range (before preconcentration) with detection limits of 4, 8, and 2 ng L?1 for Hg, Pb, and Cd, respectively. Relative standard deviations of 2.3, 2.9, and 2.4% (concentration 50 ng mL?1, n = 7) and high preconcentration factors of 291, 285, and 288 were also obtained for Hg, Pb, and Cd. The accuracy of the proposed method was validated by analyzing a water certified reference material with satisfactory recoveries. The method was successfully applied to the determination of the analytes in tap and mineral waters and canned tuna fish samples.  相似文献   

4.
In this research, magnetic Fe3O4 nanoparticles were synthesised by co-precipitation method and modified with polythiophene (PT) to produce Fe3O4-PT nanoparticles for preconcentration and determination of cadmium (??) ion followed by electrothermal atomic absorption spectrometry. The results of FT-IR spectroscopy, EDX analysis and SEM images show that Fe3O4-PT nanoparticles were synthesised successfully. Different parameters such as sample pH, amounts of adsorbent, sample volume, extraction time, type and concentration of eluent and desorption time were completely investigated and optimum conditions were selected.

Under the optimum conditions, the calibration curve was linear in the range of 0.01–0.25 µg L?1 of cadmium (??). The relative standard deviation was 4.7% (n = 7, 0.10 µg L?1 Cd2+) and limit of detection was 3.30 ng L?1. The accuracy of the proposed method was verified by the analysis of a certified reference material and spike method. Finally, the proposed method was applied for the determination of ultra-trace levels of cadmium (??) in different water and food samples.  相似文献   

5.
Amino group-functionalized Fe3O4 is loaded on a coordination complex-modified polyoxometalate nanoparticle. In this composite material, Fe3O4 and coordination complex-modified polyoxometalate are connected with intense hydrogen bonds as suggested by FTIR. This composite material exhibits excellent methylene blue (MB) adsorption, with adsorption capacity of 175.5 mg g?1. It also possesses selective separation ability between cationic and anionic dye molecules. In binary solution of MB and methyl orange (MO), MB adsorption efficiency reaches 75%, but it exhibits almost no effect on the adsorption of methyl orange. The saturation magnetization value of this composite material is 18.89 emu g?1, allowing magnetic separation, which facilitates the recycle and reuse of this composite adsorbent.  相似文献   

6.
We report on the synthesis of polymeric nanoparticles (PNPs) containing a tetrakis(3-hydroxyphenyl)porphyrin, and their use for the separation of mercury(II) ion. The PNPs were prepared by bulk polymerization from methacrylic acid (the monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator) and the mercury(II) complex of 5,10,15,20-tetrakis(3-hydroxyphenyl)-porphyrin. The Hg(II) ion was then removed by treatment with dilute hydrochloric acid. The PNPs were characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. The material is capable of binding Hg(II) from analyte samples. Bound Hg(II) ions can be eluted with dilute nitric acid and then quantified by cold vapor AAS. The extraction efficiency, the effects of pH, preconcentration and leaching times, sample volume, and of the nature, concentration and volume of eluent were investigated. The maximum adsorption capacity of the PNPs is 249 mg g?1, the relative standard deviation of the AAS assay is 2.2 %, and the limit of detection (3σ) is 8 ng.L?1. The nanoparticles exhibit excellent selectivity for Hg(II) ion over other metal ions and were successfully applied to the selective extraction and determination of Hg(II) ion in spiked water samples.
Figure
Schematic presentation of leaching process of mercury(II) ion from the prepared IIP  相似文献   

7.
Magnetic solid-phase extraction (MSPE) coupled with gas chromatography–mass spectrometry was applied for the analysis of organophosphorus pesticides (OPPs) in water samples. We chose C18-functionalized Fe3O4@mSiO2 microspheres as the magnetic sorbents to extract and enrich OPPs from water samples with the advantages of good solubility in water, large surface area and fast separation ability. In this study, six kinds of OPPs were analyzed and various parameters of MSPE procedure, including eluting solvent, the amount of magnetic absorbents and extraction time were optimized. Validation experiments showed that the optimized method had good linearity with correlation coefficients r 2 > 0.98 and satisfactory precision with the relative standard deviation ≤10.7 %. The limits of detection were 1.8–5.0 μg L?1 and the limits of quantification ranged from 6.1 to 16.7 μg L?1. We concluded that the proposed method was successfully applied to analyze OPPs in real water samples and the results indicated that it had the advantages of simplicity, convenience and efficiency.  相似文献   

8.
《Analytical letters》2012,45(13):2217-2230
Abstract

(Acetylacetone)‐2‐thiol‐phenyleneimine (H2L) immobilized on an anion‐exchange resin (Dowex) was used for separation and removal of mercury from natural water samples and for preconcentration prior to its determination by cold vapor inductively coupled plasma atomic emission spectroscopy. The metal was eluted from the column using a solution of 10% thiourea in 0.1 M HCl. The modified resin is higly selective with an exchange capacity of 1.60 mmol g?1. Various parameters like pH, column flow rate, and desorbing agents are optimized. The proposed method has a linear calibration range of 15–1000 ng/ml Hg(II), with a relative standard deviation at the 15 ng/ml level of 3.5%. The precision of the method (evaluated as the relative standard deviation obtained after analyzing six series of five replicates) was ±4.2% at the 50 ng/ml level of Hg(II). The method has been used for routine determination of trace levels of mercury species in natural waters. The potential application of modified resin for the removal of mercury(II) from two natural water samples (top water and lake water) spiked with 50 ng/ml of mercury (II) was studied by ICP‐AES, and the results proved that excellent percent extraction of mercury(II) from both natural water samples was obtained by column method using modified resin.  相似文献   

9.
Molecular imprinted polymer for determination of malachite green (MG) and fuchsine basic (FU) dyes by spectrophotometry has been used, to develop a novel simultaneous extraction and preconcentration method. Molecularly imprinted layer-coated nano-alumina (MIP@Nano-Al2O3) as adsorbent was prepared by surface molecular imprinting technique, and characterised by FTIR spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis (EDAX) and thermogravimetric analysis (TGA). The method is based on simultaneous extraction of MG and FU dyes from aqueous solution by using molecularly imprinted polymer and measuring the absorbance at 617 and 546 nm for MG and FU, respectively. Parameters which affect the extraction efficiency such as pH, volume of eluent and amount of adsorbent were investigated and optimised. Linear calibration curves were obtained in the range of 2–750 ng mL?1 for MG and 1–240 ng mL?1 for FU under optimum conditions. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.655 and 0.245 ng mL?1 (n = 10) for MG and FU, respectively. The relative standard deviation (RSD) for 100 ng mL?1 of MG and FU was 2.35 and 3.06% (n = 7), respectively. The method was applied to the simultaneous determination of the dyes in different seafood and environmental water samples.  相似文献   

10.
A new facile, rapid, inexpensive, and sensitive method based on magnetic micro-solid phase extraction (M-??-SPE) coupled to gas chromatography?Cmass spectrometry (GC?CMS) was developed for determination of the herbicide oxadiargyl in environmental water samples. The feasibility of employing non-modified magnetic nanoparticles (MNPs) as sorbent was examined and applied to perform the extraction process. Influential parameters affecting the extraction efficiency along with desorption conditions were investigated and optimized. The limit of detection (LOD, S/N = 3) and limit of quantification (LOQ, S/N = 10) of the method under optimized conditions were 0.005 and 0.030 ng mL?1, respectively. The relative standard deviations (RSD) (n = 3) at a concentration of 0.10 ng mL?1 was 11%. The calibration curve of oxadiargyl showed linearity in the range of 0.050?C0.50 ng mL?1. The developed method was successfully applied to the extraction of oxadiargyl from spiked tap water and Zayande-Rood River water samples and the relative recoveries of 98 and 94% were obtained, respectively.  相似文献   

11.
A simple, rapid and efficient method has been developed for the extraction, preconcentration and determination of copper, lead and zinc ions in water samples by air-assisted liquid–liquid microextraction coupled with graphite furnace atomic absorption spectrometry (GFAAS). In the proposed method, much less volume of an organic solvent (in the order of some µL) was used as the extraction solvent in the absence of disperser solvent. Fine organic droplets were formed by sucking and injecting of the mixture of aqueous sample solution and extraction solvent with a syringe for several times in a conical test tube. After extraction, phase separation was achieved by centrifugation and the enriched analytes in the sedimented phase were determined by GFAAS. Several variables potentially affecting the extraction efficiency were investigated and optimized. Calibration graphs were linear in the concentration range of 45.0–1100 ng L?1. Detection limits were in the range of 18.0–26.0 ng L?1. The accuracy of the developed procedure was checked by analyzing NRCC-SLRS4 Riverine water as a certified reference material. Finally, the proposed method was successfully applied to determine the selected heavy metals in tap, surface and river water samples.  相似文献   

12.
A novel adsorbent of multi-wall carbon nanotubes (MWCNTs) chemically modified silica (MWCNTs-silica) was synthesised and employed as the adsorbent material for solid-phase extraction (SPE) of trace Zn(II), Cu(II), Cd(II), Cr(III), V(V) and As(V) in environmental water samples followed by inductively coupled plasma optical emission spectrometry detection. This material inherits the advantages of nanomaterial MWCNTs and conventional silica with dual functional groups (–NH2 and –COOH), and avoid the problem of nanomaterial in SPE, such as high pressure. The factors affecting the separation and preconcentration of target elements such as pH, sample flow rate and volume, eluent concentration and volume were investigated. Under the optimised conditions, the detection limits for Zn(II), Cu(II), Cd(II), Cr(III), V(V) and As(V) were 0.27, 0.11, 0.45, 0.91, 0.55 and 0.67 μg L?1 with the relative standard deviations of 3.1, 5.9, 4.1, 4.0, 7.3 and 8.6% (c = 10 μg L?1, n = 7), respectively. The adsorption capacity of MWCNTs-silica was 26.6, 70.0, 13.8, 58.0, 20.0 and 20.0 mg g?1 for Zn(II), Cu(II), Cd(II), Cr(III), V(V) and As(V), respectively, and the prepared adsorbent could be reused more than 100 times. In order to validate the developed method, two certified reference materials of GSBZ50009-88 and GSBZ 50029-94 environmental waters were analysed and the determined values were in good agreement with the certified values. The developed method has been applied to the determination of trace elements in environmental water samples with satisfactory results.  相似文献   

13.
Fe3O4-SiO2-C18 paramagnetic nanoparticles have been synthesised and used as magnetic solid-phase extraction (MSPE) sorbent for the extraction of Zineb from agricultural aqueous samples under ultrasonic condition and quantified through a first-derivative spectrophotometric method. The produced magnetic nanoparticles were characterised by using scanning electron microscopy, X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy and zeta potential reader. The Fe3O4-SiO2-C18 paramagnetic nanoparticles had spherical structures with diameters in the range of 198–201 nm. Further, MSPE was performed by dispersion of Fe3O4-SiO2-C18 paramagnetic nanoparticles in a buffered aqueous solution accompanied by sonication. Next, the sorbents were accumulated by applying an external magnetic field and were washed with 4-(2-pyridylazo) resorcinol-dimethyl sulfoxide solution, for the purpose of desorbing the analyte. The extraction conditions (sample pH, washing and elution solutions, amount of sorbents, time of extraction, sample volume and effect of diverse ions), as well as Zineb-PAR first-order derivative spectra, were also evaluated. The calibration curve of the method was linear in the concentration range of 0.055–24.3 mg L?1 with a correlation coefficient of 0.991. The limit of detection and limit of quantification values were 0.022 and 0.055 mg L?1, respectively. The precision of the method for 0.27 mg L?1 solution of the analyte was found to be less than 3.2%. The recoveries of three different concentrations (0.27, 1.37 and 13.7 mg L?1) obtained 98.3%, 98.5% and 96.0%, respectively. The proposed Fe3O4-SiO2-C18 paramagnetic nanoparticles were found to have the capability of reusing for 7.0 times.  相似文献   

14.
Before coal processing such as pyrolysis, liquefaction, gasification and combustion, it is very crucial to monitor the trace element concentration levels as that determines the coal quality. Therefore, the current study describes the development of microwave-assisted acid extraction (MW-AAE) method for extraction of 15 trace elements in coal samples prior to their determination using inductively coupled plasma-mass spectrometry. Diluted HNO3-H2O2 was used in order to reduce reagents amount used, eliminate matrix interferences caused by concentrated acids and to decrease waste produced in analytical laboratories. The optimisation of the proposed extraction method was carried out by using a full factorial design (24) involving four factors; that is, temperature, extraction time, HNO3 and H2O2 concentrations. The optimum conditions for the MW-AAE procedure were found to be 200°C, 5 min, 5 mol L?1 and 2 mol L?1 for temperature, extraction time, HNO3 and H2O2 concentrations, respectively. Under optimum conditions, the accuracy of the MW-AAE method was examined by analysing three coal certified reference materials (SARM 18, 19 and 20) and recoveries of 80–115% were achieved for V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Sr, Zr, Cs, Ba, Pb and U, except for Ti (10–25%) and Hf (27–70%). In addition, the precision of the proposed method, expressed in terms of relative standard deviation (SD) (n = 15), was within the accepted range (≤3.5%). The method detection limits of 0.001–0.57 µg g?1 for all trace elements under the investigation were similar to the literature reported work, except for Ti (4.00 µg g?1).  相似文献   

15.
《Analytical letters》2012,45(13):2075-2088
For the first time, a simple method for magnetic stirring-assisted dispersive suspended microextraction has been developed for the determination of three fungicides (azoxystrobin, diethofencarb, and pyrimethanil) in water and wine samples. The method is based on the solidification of a floating organic droplet coupled with high performance liquid chromatography. In the proposed method, the low toxicity solvent 1-dodecanol was used as the extractant. Both the extraction and phase separation process were performed with magnetic stirring. No centrifugation step was involved. After separating the two phases, the extraction solvent droplet was easily collected through solidification at lower temperature. Important parameters such as the kind and volume of organic extraction solvent, extraction and restoration speed, extraction and restoration time, and salt concentration were optimized. Under the optimal conditions, the limits of detection for the analytes varied from 0.14 to 0.26 µg L?1. The enrichment factors ranged from 125–200. The linearity ranges were 1–2000 µg L?1, yielding correlation coefficients (r) higher than 0.9990. The relative standard deviation (n = 6) at two spiked level of 0.2 µg mL?1 and 4 µg L?1 varied between 2.2% and 7.8%. Finally, the developed technique was successfully applied to determine target fungicides in real water and wine samples, where the obtained recoveries ranged from 83.8–105.3%  相似文献   

16.
A novel magnetic dispersive solid phase extraction method using magnetic multi-walled carbon nanotubes modified with 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium salt (bismuthiol II) (MMWCNTs@Bis) as the sorbent was developed for the separation and preconcentration of inorganic selenium (IV) prior to its determination by electrothermal atomic absorption spectrometry. The prepared MMWCNTs@Bis sorbent was characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer and X-ray diffraction. Total selenium was determined after reduction of Se(VI) to Se(IV) by addition of hydrochloric acid and heating the mixture in a boiling water bath. Se(VI) concentration was determined from the difference between the amounts of total selenium and Se(IV). Under the optimised experimental conditions, an enhancement factor of 196 and a detection limit (based on 3Sb/m) of 0.003 µg L?1 was obtained for aqueous samples. The relative standard deviation at 0.1 µg L?1 concentration level of Se(IV) (n = 6) was found to be 5.2 and 7.7% for intra- and inter-day analysis, respectively. The method was successfully applied to the determination of inorganic selenium species in water and total selenium in food samples.  相似文献   

17.
A rapid, simple and efficient procedure is demonstrated for extraction and determination of an endocrine-disrupting compound, synthetic estrogen, 17α-ethynylestradiol (EE2), in water and wastewater samples via magnetic solid-phase extraction followed by high-performance liquid chromatography coupled with UV detection. The analytical method is based on extraction of EE2 by dispersing magnetic nanoparticles in sample solution for a desired time and then eluting the analytes with an appropriate solvent. The nanoparticles were modified with a hydrophobic material by self-assembling an organosulfur compound (bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid) onto the silver-coated Fe3O4 nanoparticles as sorbent. The effects of several parameters, such as amount of sorbent, sample volume, extraction time, ionic strength and desorption conditions, were examined to obtain better efficiency. The optimized methodology exhibited a good linearity between 0.5 and 100 μg L?1 with a limit of detection (LOD) of 0.3 μg L?1, and a preconcentration factor of 245 with intra- and inter-day precisions (relative standard deviations) 2.4 and 3.2 %, respectively. The developed method was successfully applied for extraction and determination of EE2 in different real water samples including river water, surface water and influent and effluent of a wastewater treatment plant, and satisfactory results were achieved. The method, which provides a good preconcentration factor, a low LOD and low consumption of the organic solvent, presents a rapid, simple and efficient procedure for determining EE2 in aqueous samples.  相似文献   

18.
We have designed and synthesized a thermosensitive tri-block copolymer for selective trace extraction of Pb(II) ions from biological and food samples. The polymer was characterized by Fourier transform IR and NMR spectroscopy, and by gel permeation chromatography. The critical aggregation concentration and lower critical solution temperature were determined via fluorescence and UV spectrophotometry, respectively. The effects of solution pH value, amount of copolymer, of the temperature on extraction and on phase separation, and of the matrix on the extraction of Pb(II) were optimized. Pb(II) ions were then quantified by FAAS. The use of this copolymer resulted in excellent figures of merit including a calibration plot extending from 0.5 to 160 μg L?1 (with an R2 of >0.99), a limit of detection (LOD) as low as 90 pg L?1, an extraction efficiency of >98 %, and relative standard deviations of <4 % for eight separate extraction experiments.
Figure
In this paper, for the first time an intelligent system using a thermosensitive tri-block copolymer for selective trace removal of Pb(II) in biological and food samples was designed and its determination was carried out by flame atomic absorption spectrometry.  相似文献   

19.
《Analytical letters》2012,45(12):1999-2013
Abstract

A simple, rapid, selective, and sensitive method for the derivative spectrophotometric determination of Hg(II) and its simultaneous determination in the presence of Zn(II) using 2‐(5‐bromo‐2‐pyridylazo)‐5‐diethylaminophenol in the presence of cetylpyridinium chloride, a cationic surfactant, has been developed. The molar absorption coefficient and analytical sensitivity of the 1∶1 Hg(II) complex at 558 nm (λmax) are 5.78×104 L mol?1 cm?1 and 0.67 ng mL?1, respectively. The detection limit of Hg(II) is 1.40×10?2 ng mL?1, and Beer's law is valid in the concentration range 0.05–2.40 µg mL?1. Overlapping spectral profiles of Hg(II) and Zn(II) complexes in zero‐order mode interfere in their simultaneous determination. However, 0.10–2.00 µg mL?1 of Hg(II) and 0.065–0.650 µg mL?1 of Zn(II), when present together, can be simultaneously determined at zero cross point of the derivative spectrum, without any prior separation. The relative standard deviation for six replicate measurements of solutions containing 0.134 µg mL?1 of Hg(II) and 0.620 µg mL?1 of Zn(II) is 1.72 and 1.47%, respectively. The proposed method has successfully been evaluated for trace level simultaneous determination of Hg(II) and Zn(II) in environmental samples.  相似文献   

20.
Activated carbon was chemically modified with 4-(8-hydroxyquinoline-azo)benzamidine and used for separation and preconcentration of trace amounts of Pb(II) in environmental samples by solid-phase extraction prior to the measurement by inductively coupled plasma atomic emission spectrometry. The effects of pH, shaking time, eluent concentration and volume, sample flow rate and potential interfering ions were studied. Under the optimum conditions, the enrichment factor was 100, the detection limits (3ó) is 0.43 ng?mL?1, and the relative standard deviations are <2.1% (n?=?8). The adsorption capacity of the sorbent is 53.58 mg of lead(II) per gram of the material. The sorbent was successfully applied to the preconcentration of trace Pb(II) in the reference materials GBW 08301 (river sediment) and GBW 08302 (Tibet soil). The recovery of lead(II) from Yellow river water, Huangshui water, and tap water is in range of 99.3–101.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号