首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
石墨烯导热研究进展   总被引:1,自引:0,他引:1  
石墨烯具有目前已知材料中最高的热导率,在电子器件、信息技术、国防军工等领域具有良好的应用前景。石墨烯导热的理论和实验研究具有重要意义,在最近十年间取得了长足的发展。本文综述了石墨烯本征热导率的研究进展及应用现状。首先介绍应用于石墨烯热导率测量的微纳尺度传热技术,包括拉曼光谱法、悬空热桥法和时域热反射法。然后展示了石墨烯热导率的理论研究成果,并总结了石墨烯本征热导率的影响因素。随后介绍石墨烯在导热材料中的应用,包括高导热石墨烯膜、石墨烯纤维及石墨烯在热界面材料中的应用。最后对石墨烯导热研究的成果进行总结,提出目前石墨烯热传导研究中存在的机遇与挑战,并展望未来可能的发展方向。  相似文献   

2.
传统高分子材料由于内部分子链无规则缠绕的特点,导致其热导率较小。近年来,拥有高导热特性的新型高分子材料在众多领域都显示出了极大的发展潜力。随着研究的不断深入,具有优秀导热能力的石墨烯等低维碳材料引起越来越多人的关注。引入石墨烯制作的高分子复合材料具有较高的导热性能,在热管理方面具有很大的应用前景。本文使用非平衡态分子动力学方法计算了石墨烯点缺陷对石墨烯-高分子复合材料界面热导和整体热导率的影响。石墨烯层的界面热导受点缺陷密度的影响较大。当石墨烯缺陷密度由0%增大到20%时,其界面热导由75.6 MW·m~(-2)·K~(-1)增加为85.9 MW·m~(-2)·K~(-1)。石墨烯点缺陷造成sp~2共价键断裂、结构刚性下降,导致其振动态密度的低频分量增加,增强了与高分子基质间的低频能量耦合,进而提高了界面热导。而点缺陷密度的增大对复合材料整体热导率也具有相似的提升效果(从40.8 MW·m~(-2)·K~(-1)增加为45.6 MW·m~(-2)·K~(-1))。此外,高分子基体在石墨烯界面处会造成局部密度提高,但石墨烯点缺陷对高分子材料局部密度提升并无显著影响。这些计算结果加深了对石墨烯与高分子基体间导热机理的理解,并有助于开发和设计具有优异热学性能的高分子复合材料。  相似文献   

3.
石墨烯作为时下最热门的纳米材料,吸引了国内外众多科研工作者的注意力。而石墨烯所具有的超高导热性能,使其在环氧导热复合材料中有着巨大的应用前景。本文主要综述了当前石墨烯/环氧复合材料导热性能的研究进展,详细介绍了石墨烯的尺寸、与其它填料的复配以及石墨烯表面改性等因素对导热性能的影响。此外,还分析了复合材料的微观结构对导热性能的影响。最后,对导热型石墨烯/环氧复合材料的发展进行了展望,并指出了该领域存在的技术难点和未知机理。  相似文献   

4.
基于柔韧吸水的天然宣纸和大球-小球复合球磨法剥离宏量高分散的水性石墨烯分散液,通过浸泡吸附-机械压缩-热处理路线,绿色制备了柔性导热石墨烯-碳化宣纸复合膜.该石墨烯-碳化宣纸复合膜的电导率和热导率分别高达568 S/cm和258 W/mK,其红外热成像图片展现了好的热传输性能.另外,该石墨烯-碳化宣纸复合膜具有良好的柔韧性,反复弯曲100次之后,其电阻基本不变.  相似文献   

5.
石墨烯是一种新型二维纳米片层碳材料,拥有极高的机械强度、电子迁移率、导热系数及独特的化学结构,将其作为填料对聚氨酯进行功能化改性可有效改善基体的力学、导热导电、电磁屏蔽等性能,因此成为近年来复合材料研究领域的一大热点。本文对石墨烯改性及其在聚氨酯材料中的研究进展进行了综述,以复合材料的制备方法、性能研究进行分类,对复合材料常用的拉伸、压缩、导热模型建立方法进行了总结,展望了石墨烯/聚氨酯复合材料产业化的挑战与机遇。  相似文献   

6.
采用表面引发原子转移自由基聚合法(SI-ATRP)改性氧化石墨烯(GO), 并用其稳定Pickering高内相乳液, 一步成型制得高导热氧化石墨烯/石蜡复合整体相变材料. 通过SI-ATRP方法, 在氧化石墨烯表面引入分子刷, 提高GO的分散性, 实现了低GO含量下优异的导热强化效果. 当GO添加量仅为相变复合材料整体的0.4%(质量分数)时, 其热导率(3.968 W?m-1?K-1)比纯石蜡的热导率(0.608 W?m-1?K-1)有较大提升. 通过测试发现, 在1000次循环后相变材料的泄漏率仅为1.1%~1.3%, 表现出良好的形状稳定性和热可靠性. 制备的新型形状稳定相变材料在温控、 储能应用中具有潜在的用途.  相似文献   

7.
随着电子技术快速的发展,聚合物材料自身较低的热导率已不能满足现代电子器件的散热需求,因此提高聚合物热导率,实现高效率的传热具有重要意义。六方氮化硼(h-BN)具有良好的高电击穿强度,导热性能、介电性能、低吸湿率、高温耐氧化等诸多特性,是制备低介电常数、低介电损耗和高导热聚合物的理想填料。本文分别从目前制备BNNSs的主要方法及提高BN复合材料热导率的不同思路两个方面,综述了以六方氮化硼(h-BN)为填料的导热聚合物复合材料的研究现状。  相似文献   

8.
本文首先把固体功能材料格点化,在无源、稳态情况下得到格点化了的热传导方程。利用格点模型,用Monte Carlo方法模拟了复合固体功能材料在无源、稳态下的温度场,以此来求其热导率。模拟的结果表明,在掺入的良导热体的体积分数固定的情况下,随着掺入物热导率的增加,复合材料的热导率呈对数规律增长;在掺入物的热导率固定不变的情况下,随着掺入物在复合材料中所占比例的增加,复合材料的热导率呈指数规律增长。这些模拟结果与实验结果符合得较好。  相似文献   

9.
石墨烯是一种sp2杂化的平面类蜂窝型二维结构材料,特殊的结构赋予其许多优良的性能,如导电、导热性能好,载流子迁移率高和透射性好等,使其在电子器件领域表现出巨大潜力。 本文从石墨烯在三维集成电路中的应用、石墨烯场效应晶体管、石墨烯有机发光二极管及化学传感器四方面综述了石墨烯电子器件的研究进展及现状。  相似文献   

10.
石墨烯/橡胶纳米复合材料   总被引:3,自引:0,他引:3  
石墨烯具有极高的力学性质和导电/导热性质,在橡胶复合材料中具有广阔的应用前景.本文首先简要综述了石墨烯的制备和功能化,而后重点介绍了石墨烯/橡胶复合材料的制备方法、性能及相关的结构-性能关系研究的现状,并对石墨烯/橡胶复合材料研究的挑战和机遇进行了展望.  相似文献   

11.
Polymers are widely used advanced materials composed of macromolecular chains, which can be found in materials used in our daily life. Polymer materials have been employed in many energy and electronic applications such as energy harvesting devices, energy storage devices, light emitting and sensing devices, and flexible energy and electronic devices. The microscopic morphologies and electrical properties of the polymer materials can be tuned by molecular engineering, which could improve the device performances in terms of both the energy conversion efficiency and stability. Traditional polymers are usually considered to be thermal insulators owing to their amorphous molecular chains. Graphene-based polymeric materials have garnered significant attention due to the excellent thermal conductivity of graphene. Advanced polymeric composites with high thermal conductivity exhibit great potential in many applications. Therefore, research on the thermal transport behaviors in graphene-based nanocomposites becomes critical. Vacancy defects in graphene are commonly observed during its fabrication. In this work, the effects of vacancy defects in graphene on thermal transport properties of the graphene-polyethylene nanocomposite are comprehensively investigated using molecular dynamics (MD) simulation. Based on the non-equilibrium molecular dynamics (NEMD) method, the interfacial thermal conductance and the overall thermal conductance of the nanocomposite are taken into consideration simultaneously. It is found that vacancy defects in graphene facilitate the interfacial thermal conductance between graphene and polyethylene. By removing various proportions of carbon atoms in pristine graphene, the density of vacancy defects varies from 0% to 20% and the interfacial thermal conductance increases from 75.6 MW·m−2·K−1 to 85.9 MW·m−2·K−1. The distinct enhancement in the interfacial thermal transport is attributed to the enhanced thermal coupling between graphene and polyethylene. A higher number of broken sp2 bonds in the defective graphene lead to a decrease in the structure rigidity with more low-frequency (< 15 THz) phonons. The improved overlap of vibrational density states between graphene and polyethylene at a low frequency results in better interfacial thermal conductance. Moreover, the increase in the interfacial thermal conductance induced by vacancy defects have a significant effect on the overall thermal conductance (from 40.8 MW·m−2·K−1 to 45.6 MW·m−2·K−1). In addition, when filled with the graphene layer, the local density of polyethylene increases on both sides of the graphene. The concentrated layers provide more aligned molecular arrangement, which result in better thermal conductance in polyethylene. Further, the higher local density of the polymer near the interface provides more atoms for interaction with the graphene, which leads to stronger effective interactions. The relative concentration is insensitive to the density of vacancy defects. The reported results on the thermal transport behavior of graphene-polyethylene composites provide reasonable guidance for using graphene as fillers to tune the thermal conduction of polymeric composites.  相似文献   

12.
近些年来,石墨烯以其独特的结构和优异的性质成为备受瞩目的研究前沿和热点。石墨烯作为纳米增强组分,少量添加可以使聚合物的物理性能得到大幅地提高。本文就石墨烯及其在聚合物复合材料的研究进展进行了综述,着重阐述了现已工业化制备石墨烯的氧化还原法,以及石墨烯/聚合物复合材料的制备方法(溶液共混、原位聚合和熔融共混)和性能(电学性能、导热性能、力学性能、热性能以及气体阻隔性能),并指出其待解决的关键技术及工业化前景。  相似文献   

13.
The recent global pandemic and its tremendous effect on the price fluctuations of crude oil illustrates the side effects of petroleum dependency more evident than ever. Over the past decades, both academic and industrial communities spared endless efforts in order to replace petroleum-based materials with bio-derived resources. In the current study, a series of shape memory polymer composites (SMPC's) was synthesized from epoxidized vegetable oils, namely canola oil and castor oil fatty acids (COFA's) as a 100% bio-based polyol and isophorone diisocyanate (IPDI) as an isocyanate using a solvent/catalyst-free method in order to eventuate polyurethanes (PU's). Thereafter, graphene oxide (GO) nanoplatelets were synthesized and embedded in the neat PU in order to overcome the thermomechanical drawbacks of the neat matrix. The chemical structure of the synthesized components, as well as the dispersion and distribution levels of the nanoparticles, was characterized. In the following, thermal and mechanical properties as well as shape memory behavior of the specimens were comprehensively investigated. Likewise, the thermal conductivity was determined. This study proves that synthesized PU's based on vegetable oil polyols, including graphene nanoparticles, exhibit proper thermal and mechanical properties, which make them stand as a potential candidate to compete with traditional petroleum-based SMPC's.  相似文献   

14.
Adsorption technology is widely considered as the most promising and robust method of purifying water at low cost and with high-efficiency. Carbon-based materials have been extensively explored for adsorption applications because of their good chemical stability, structural diversity, low density, and suitability for large scale production. Graphene – a single atomic layer of graphite – is the newest member in the family of carbon allotropes and has emerged as the “celeb” material of the 21st century. Since its discovery in 2004 by Novoselov, Geim and co-workers, graphene has attracted increased attention in a wide range of applications due to its unprecedented electrical, mechanical, thermal, optical and transport properties. Graphene's infinitely high surface-to-volume ratio has resulted in a large number of investigations to study its application as a potential adsorbent for water purification. More recently, other graphene related materials such as graphene oxide, reduced graphene oxide, and few-layered graphene oxide sheets, as well as nanocomposites of graphene materials have also emerged as a promising group of adsorbent for the removal of various environmental pollutants from waste effluents. In this review article, we present a synthesis of the current knowledge available on this broad and versatile family of graphene nanomaterials for removal of dyes, potentially toxic elements, phenolic compounds and other organic chemicals from aquatic systems. The challenges involved in the development of these novel nanoadsorbents for decontamination of wastewaters have also been examined to help identify future directions for this emerging field to continue to grow.  相似文献   

15.
The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.  相似文献   

16.
Graphene, a single atomic layer of graphite, has been the focus of recent intensive studies due to its novel electronic and structural properties. Metals grown on graphene also have been of interest because of their potential use as metal contacts in graphene devices, for spintronics applications, and for catalysis. All of these applications require good understanding and control of the metal growth morphology, which in part reflects the strength of the metal–graphene bond. Also of importance is whether the interaction between graphene and metal is sufficiently strong to modify the electronic structure of graphene. In this review, we will discuss recent experimental and computational studies related to deposition of metals on graphene supported on various substrates (SiC, SiO2, and hexagonal close-packed metal surfaces). Of specific interest are the metal–graphene interactions (adsorption energies and diffusion barriers of metal adatoms), and the crystal structures and thermal stability of the metal nanoclusters.  相似文献   

17.
In the years since the discovery of organic polymers that exhibited electrical conductivities comparable to some metals, other novel carbon-based conductors have been developed, including carbon nanotubes and graphene (monolayers of carbon atoms). In this critical review, we discuss the common features and the differences in the conduction mechanisms observed in these carbon-based materials, which range from near ballistic and conventional metallic conduction to fluctuation-assisted tunnelling, variable-range hopping and more exotic mechanisms. For each category of material, we discuss the dependence of conduction on the morphology of the sample. The presence of heterogeneous disorder is often particularly important in determining the overall behaviour, and can lead to surprisingly similar conduction behaviour in polymers, carbon nanotube networks and chemically-derived graphene (122 references).  相似文献   

18.
环氧树脂作为一种优异的树脂基体,被广泛地应用于众多领域,但因其极易燃烧,所以常常需要对其进行阻燃处理。本文简要综述了近几年有机磷系化合物及石墨烯阻燃环氧树脂的研究进展,其中有机磷系化合物阻燃部分重点介绍了以阻燃剂中间体9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)及其衍生物和聚磷酸铵(APP)为代表的含磷阻燃剂在环氧树脂中的阻燃机理和阻燃进展;同时也介绍了石墨烯及其衍生物在环氧树脂阻燃领域的最新研究进展,并对其发展前景进行了展望。  相似文献   

19.
The application of graphene‐based sorbents in sample preparation techniques has increased significantly since 2011. These materials have good physicochemical properties to be used as sorbent and have shown excellent results in different sample preparation techniques. Graphene and its precursor graphene oxide have been considered to be good candidates to improve the extraction and concentration of different classes of target compounds (e.g., parabens, polycyclic aromatic hydrocarbon, pyrethroids, triazines, and so on) present in complex matrices. Its applications have been employed during the analysis of different matrices (e.g., environmental, biological and food). In this review, we highlight the most important characteristics of graphene‐based material, their properties, synthesis routes, and the most important applications in both off‐line and on‐line sample preparation techniques. The discussion of the off‐line approaches includes methods derived from conventional solid‐phase extraction focusing on the miniaturized magnetic and dispersive modes. The modes of microextraction techniques called stir bar sorptive extraction, solid phase microextraction, and microextraction by packed sorbent are discussed. The on‐line approaches focus on the use of graphene‐based material mainly in on‐line solid phase extraction, its variation called in‐tube solid‐phase microextraction, and on‐line microdialysis systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号