首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NaPO3?Pr(PO3)3 system was studied by microdifferential thermal analysis (DTA), IR and X-ray diffraction spectroscopies. The only new compound observed in the system is NaPr(PO3)4, which melts incongruently at 1149 K. A eutectic appears at 5% Pr(PO3)3 at 901 K. The new compound NaPr(PO3)4 was characterized by means of powder X-ray diffraction and IR absorption spectroscopy. NaPr(PO3)4 is a NaLa(PO3)4 isotype; it crystallizes in the monoclinic system P21/c witha=12.328(7),b=13.130(5),c=7.231(5) Å, β=126°, 18(5),Z=4,V=945 ?3.  相似文献   

2.
The AgPO3?Pr(PO3)3 system has been studied for the first time by differential thermal analysis, X-ray diffraction and IR spectroscopy. The system shows one compound AgPr(PO3)4 which melts in a peritectic decomposition at 1069 K. An eutectic appears at 761 K. AgPr(PO3)4 belongs to the monoclinic system with space group P2t/c,Z=4. The parameters of the unit cell are:a=12.000(9),b=13.177(4),c=7.046(5) Å and β=123o,81(6),Z=4. Its IR absorption spectrum is typical of chain phosphates.  相似文献   

3.
The previously unknown binary system KPO3-Y(PO3)3 has been examined by thermal, X-ray and microscopic analysis and its phase diagram provided. The existence of the compound KY(PO3)4 has been confirmed. Its melting point (700°, incongruent) and basic parameters of the unit cell (monoclinic system, space group P21/n, lattice parameters: a=7.36, b=8.36, c=14.39 Å, =96.1°) have been determined. The new, so far unknown, compound has been discovered and assigned the formula K2Y(PO3)5. It has been found that it forms peritectoidally (in the solid phase) at 642°.
Zusammenfassung Das zuvor unbekannte binäre System KPO3-Y(PO3)3 wurde mittels Thermo-, Röntgendiffraktions- und mikroskopischer Analyse untersucht und das Phasendiagramm aufgestellt. Die Existenz der Verbindung KY(PO3)4 wurde dabei bekräftigt. Ihr Schmelzpunkt (700°, inkongruent) und die grundlegenden Parameter der Elementarzellen (monoklines System, Raumgruppe P21/n, Gitterkonstanten: a=7.36, b=8.36, c=14.39 Å, =96.1°) wurden ermittelt. Weiterhin wurde eine neue, bislang unbekannte Verbindung mit der Formel K2Y(PO3)5 entdeckt. Sie verfügt (in fester Phase) über ein Peritektikum bei 642°.


This paper was included in the CPBP-01.18 problem and was financially supported by the Ministry of National Education.  相似文献   

4.
The new ternary calcium indium(III) phosphate CaIn2(PO4)2(HPO4) with mixed octahedral-tetrahedral framework was synthesized through hydrothermal reaction of stoichiometric amounts of CaO and InCl3 with excess of H3PO4 and H2O at pH = 1. Single crystal x-ray diffraction studies show the compound to crystallize in monoclinic symmetry, space group P21/n (#14) with a = 657.08(6), b = 2023.7(2), c = 665.72(7) pm, β = 91.20(1)°, Z = 4 and R = 0.043. The framework is built up of dimers of edge-sharing InO6 octahedra forming In2O10 units sharing all their OXO ligands with PO4 tetrahedra, and HPO4 groups.  相似文献   

5.

Chemical preparation, crystal structure, thermogravimetric and differential analysis, solid state 31P MAS NMR characterization, and IR spectroscopic investigations are given for a new organic cation dihydrogenmonophosphate, (2-CH3OC6H4CH2NH3)H2PO4. This compound is monoclinic C2/c, with unit cell parameters a = 27.740(8), b = 4.827(2), c = 16.435(3) Å, β = 93.79(2)°, V = 2196 (1) Å3, Z = 8, and ρ = 1.422 g · cm?3. The crystal structure has been determined and refined to R = 0.046 (Rw = 0.056), using 1,746 independent reflections with I > 3σ (I). Its atomic arrangement can be described by infinite polyanions [H2PO4] n n ?, organized in ribbons alternating with organic cations. Strong hydrogen bonds connect the different components. Electrical conductivity measurements show that the [2-CH3OC6H4CH2NH3]H2PO4 has a low ionic conductivity value at 403 K.  相似文献   

6.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXII. New Orthophosphates of Divalent Chromium — Mg3Cr3(PO4)4, Mg3, 75Cr2, 25(PO4)4, Ca3Cr3(PO4)4 and Ca2, 00Cr4, 00(PO4)4 Solid state reactions via the gas phase led in the systems A3(PO4)2 / Cr3(PO4)2 (A = Mg, Ca) to the four new compounds Mg3Cr3(PO4)4 ( A ), Mg3.75Cr2.25(PO4)4 ( B ), Ca3Cr3(PO4)4 ( C ), and Ca2.00Cr4.00(PO4)4 ( D ). These were characterized by single crystal structure investigations [( A ): P21/n, Z = 1, a = 4.863(2) Å, b = 9.507(4) Å, c = 6.439(2) Å, β = 91.13(6)°, 1855 independend reflections, 63 parameters, R1 = 0.035, wR2 = 0.083; ( B ): P21/a, Z = 2, a = 6.427(2) Å, b = 9.363(2) Å, c = 10.051(3) Å, β = 106.16(3)°, 1687 indep. refl., 121 param., R1 = 0.032, wR2 = 0.085; ( C ): P‐1, Z = 2, a = 8.961(1) Å, b = 8.994(1) Å, c = 9.881(1) Å, α = 104.96(2)°, β = 106.03(2)°, γ = 110.19(2)°, 2908 indep. refl., 235 param., R1 = 0.036, wR2 = 0.111; ( D ): C2/c, Z = 4, a = 17.511(2) Å, b = 4.9933(6) Å, c = 16.825(2) Å, β = 117.95(1)°, 1506 indep. refl., 121 param., R1 = 0.034, wR2 = 0.098]. The crystal structures contain divalent chromium on various crystallographic sites, each showing a (4+n)‐coordination (n = 1, 2, 3). For the magnesium compounds and Ca2.00Cr4.00(PO4)4 a disorder of the divalent cations Mg2+/Cr2+ or Ca2+/Cr2+ is observed. Mg3.75Cr2.25(PO4)4 adopts a new structure type, while Mg3Cr3(PO4)4 is isotypic to Mg3(PO4)2. Ca3Cr3(PO4)4 and Ca2.00Cr4.00(PO4) 4 are structurally very closely related and belong to the Ca3Cu3(PO4)4‐structure family. The orthophosphate Ca9Cr(PO4)7, containing trivalent chromium, has been obtained besides C and D .  相似文献   

7.
Double complex [RuNO(NH3)4OH][PtCl4] (I) and [RuNO(NH3)4OH][PdCl4] (II) salts have been prepared and explored with TGA, IR spectroscopy, powder and single crystals X-ray diffraction. Crystal phases of I and II are isostructural (space group Cmc21) and have the following crystal chemical characteristics: a = 8.106 Å, b = 18.190(3) Å, c = 8.097 Å, V = 1194.0 Å3, Z = 4, ρcalc = 3.077 g/cm3 (I), and a = 8.116 Å, b = 18.135 Å, c = 8.062 Å, V = 1186.5 Å3, Z = 4, ρcalc = 2.600 g/cm3 (II). The product of thermal decomposition of I in inert and hydrogen atmospheres is a substitution solid solution Pt0.5Ru0.5 with the parameter of the FCC unit cell a = 3.856(3) Å. Thermolysis of II affords two-phase mixtures of limited solid solutions of the metals featuring Ru-based HCP and Pd-based FCC cells. __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 48, No.1, pp.114–121, January–February, 2007.  相似文献   

8.
A novel phosphate, sodium zinc aluminium bis(phosphate), NaZnAl(PO4)2, was obtained under mild‐temperature hydrothermal conditions at 553 K. The crystal structure has been studied using single‐crystal X‐ray experimental data. The pseudo‐hexagonal phase NaZnAl(PO4)2 crystallizes in the monoclinic space group P21/c. Its unique crystal structure is based on a three‐dimensional (3D) framework built by Zn‐, Al‐ and P‐centred tetrahedra sharing vertices. Channels parallel to the [101] and [01] directions are limited by six‐ and eight‐membered windows, and incorporate Na atoms. The new compound is discussed as a member of the morphotropic series AMM′PO4, where A = Na, K, Rb or NH4, M = Cu, Ni, Co, Fe, Zn or Mg and M′ = Fe, Al or Ga. The title compound is the first Na representative within the series and is characterized by a 3D architecture of tetrahedra populated in an ordered manner by Zn2+, Al3+ and P5+ ions.  相似文献   

9.
The thermodynamic exploitation of the solid–liquid equilibria in the MIPO3–Pb(PO3)2, MIPO3–Cu(PO3)2 and MIPO3–Ce(PO3)3 systems (with M I=Li, Na, K, Rb, Cs, Ag, Tl) is carried out using a semi-empirical equation of the liquidus curves already used with success for similar binary systems. The enthalpy of fusion is calculated for each pure polyphosphate on the assumption that the liquid solution is ideal and only formed by MIPO3 and M(PO3)q entities (q=2 for Pb and Cu, q=3 for M=Ce). In the most binary systems, a wide difference between the calculated values of the melting enthalpies of these polyphosphates and the measured ones determined from the DTA curves, was observed. This difference is probably due to the existence of some molecular associations in the liquid phase.  相似文献   

10.
Study of solid-liquid phase diagram of LiPO3-Pb(PO3)2 binary system, in certain calcination conditions, shows the existence of several metastable phasis. When heated at a temperature of 723 K the binary mixtures lead uncompletely to a defined compound Pb2Li(PO3). On heating these ternary solid mixtures, three eutectic reactions have been observed: LiPO3+Pb(PO3)2→Liquid at a temperature of 793 K(1) LiPO3+Pb2Li(PO3)5→Liquid at a temperature of 843 K (2) Pb2Li(PO3)5+Pb(PO3)2→Liquid at a temperature of 891 K (3) The metastable liquid phase appears in the system at temperature of 793 K. DTA experiments performed on the binary LiPO3-Pb(PO3)2 mixtures, show a superposition of two diagrams. The first one is metastable and the second represents the stable equilibrium phase diagram. Measurements of liquid enthalpy of binary LiPO3-Pb(PO3)2 system at temperature of 979.65 K were reported. The corresponding values were very small and so the binary system can be considered as athermal. Assuming an ideal behaviour, the liquidus curves in the metastable diagram were calculated and the eutectic reaction (LiPO3-Pb(PO3)2→Liquid) was confirmed at 793 K. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
A new iron(II) orthophosphate K[Fe(PO4)] has been obtained by hydrothermal synthesis and its crystal structure was determined by single‐crystal X‐ray diffraction: space group P21/n, Z = 8, a = 9.6199(10), b = 8.6756(8), c = 10.8996(13) Å, β = 115.577(8)° at 193 K, R = 0.023. FeII shows coordination numbers (CN) 4 (distorted tetrahedral) and CN 5 (distorted trigonal bipyramidal). The [FeO4] and [FeO5] units form together with the [PO4] tetrahedra a microporous 3D para‐framework with open channels along the a and b directions. The potassium ions positioned in the channels show CN 7 and 8. The structural relations within the morphotropic row of non‐isotypic K[M(PO4)] structures (M = Zn, Ni, Mn, Fe) are discussed on the basis of common basic structural units.  相似文献   

12.
The reaction of 3,6-di-(3-methyl-pyridin-2-yI)-s-tetrazine (DMPTZ, II) with CeIII salt [Ce(NO3)3 · 6H2O] generates a new ligand, N-(3-methyl-pyridin-2-yl)-formimidoyl-(3-methyl-pyridin-2-yl) hydrazone (L), and forms a new complex: a mononuclear complex [Ce(L)(NO3)2 (H2O)3] · NO3 (III). Crystal data for III: space group P-1, with a = 0.7133(4) nm, b = 1.1139(2) nm, c = 1.4572(3) nm, α= 102.13(2)°, β= 99.81(3)°, γ= 91.10(3)°, Z = 2, V = 1113.6(7) nm3, μ = 2.123 mm−1 and F(000) = 630. L acts as a tri-dentate chelating ligand in III. There are 10 coordination sites around Ce3+ of III, which are respectively occupied by seven oxygen atoms (four from two nitrate anions and three from three H2O molecules) and three nitrogen atoms (all from L). The cerium atom and three chelating nitrogen atoms are coplanar. The mechanism of the metal assisted decomposition is discussed briefly.  相似文献   

13.
Unusual Coordination Polyhedra around Oxygen in Li4Cl(OH)3 The pseudobinary system LiOH/LiCl was investigated by X-ray methods. Two compounds, Li4Cl(OH)3 and Li2Cl(OH), were obtained. The crystal structure of Li4Cl(OH)3 solved by single-crystal methods is delt with. For Li2Cl(OH) powder diffraction data are given: Li4Cl(OH)3: P21/m, Z = 2, a = 5.4096(8) Å, b = 7.382(2) Å, c = 6.2076(8) Å, β = 94.40(1)°, Z(Fo) with (Fo)2 ≧ 3σ(Fo)2 = 483, Z (parameter) = 50, R/Rw = 0.022/0.025 Li2Cl(OH): Pmma, Z = 2, a = 7.680(8) Å, b = 4.001(7) Å, c = 3.899(6) Å The hydroxide rich compound crystallizes in a new type of structure which contains puckered layers [Li4(OH)3+] connected via chloride ions.  相似文献   

14.
Chemical preparations and crystal structures are described for two new bismuth salts: BiHNH4P3O10 and BiNH4(PO3)4. The first one is a new type of tripolyphosphate, while the second one, a long chain polyphosphate, is isostructural with RbNd(PO3)4 and some other MILn(PO3)4 compounds. BiHNH4P3O10 is triclinic, P1 , with a = 7.032(8), b = 7.696(4), c = 8.659(3) Å, α = 106.20(4), β = 105.86(4), γ = 82.78(4)°, Z = 2, V = 432.3 Å3, Dx = 3.694. BiNH4(PO3)4 is monoclinic, P21/n, with a = 10.925(9), b = 9.034(8), c = 10.438(9) Å, β = 106.18(4), Z = 4, V = 989.4 Å3, Dx = 3.644. The crystal structure of BiHNH4P3O10 has been solved by using 4253 independent reflexíons with a final R value of 0.056. The unit cell contains two P3O105? groups related by an inversion center while bismuth atoms in a eightfold coordination build infinite chains of edge-sharing BiO8 polyhedra running parallel to the a axis. The crystal structure of BiNH4(PO3)4 has been solved using 4330 independent reflexions with a final R value of 0.047. Infinite (PO3) chains spread along the [101] direction, alternating with isolated BiO8 polyhedra.  相似文献   

15.
研究了LiZr2(PO4)3在水溶液中的Na/Li和Ag/Li离子交换行为.结果表明,LiZr2(PO4)3对Na+和Ag+离子均具有很高的选择性,且对Ag+的选择性高于Na+.LiZr2(PO4)3与Ag+的离子交换反应是通过形成固溶体的形式进行的,而与Na+的离子交换反应则是通过置换进行的.温度升高有利于提高LiZr2(PO4)3上Na/Li和Ag/Li的离子交换反应速度.  相似文献   

16.
Single crystals of caesium iron hydrogen phosphate, Cs3Fe3H15(PO4)9, 2 , were prepared hydrothermally by heating caesium iron dihydrogenphosphate, CsFe(H2PO4)4, 1 , with a small amount of water. 2 crystallizes orthorhombic, space group Pna21 (No. 33 Int. Tab.) with Z = 4 and a = 2718(1), b = 908.1(3), c = 1280.8(4) pm. The crystal structure was solved by using 4734 unique reflections I > 2σ(I) with a final wR2 value of 0.0801 (SHELXL-93). The main feature of the crystal structure are channels formed by combined PO4-tetrahedra and FeO6-octahedra along the [001] direction. Cs+ is placed inside of the channels. Effective Coordination Numbers (ECoN), Mean Fictive Ionic Radii (MEFIR), Charge Distribution (CHARDI) and the Madelung Part of Lattice Energy (MAPLE) are calculated for the title compound.  相似文献   

17.
(NH4)2PO3H, H2O crystallizes in the monoclinic system, space group P21/c, with a = 6.322(1) Å, b = 8.323(1) Å, c = 12.676(1) Å, β = 98.84(1) and Z = 4. The structure was refined to R = 0.022 based on 853 independent X-Rays intensities. Improved dimensions of the tetrahedral PO3H2? ion have been obtained: P?H = 1.34(2) and P?O = 1.514(2) Å. The geometry of this ion is compared with that of PO3F2? and SO32? ions and we find a decrease of the volume: VF? > VH+ > Vlone pair.  相似文献   

18.
Na superionic conductor (NASICON) structured cathode materials with robust structural stability and large Na+ diffusion channels have aroused great interest in sodium-ion batteries (SIBs). However, most of NASICON-type cathode materials exhibit redox reaction of no more than three electrons per formula, which strictly limits capacity and energy density. Herein, a series of NASICON-type Na3+xMnTi1−xVx(PO4)3 cathode materials are designed, which demonstrate not only a multi-electron reaction but also high voltage platform. With five redox couples from V5+/4+ (≈4.1 V), Mn4+/3+ (≈4.0 V), Mn3+/2+ (≈3.6 V), V4+/3+ (≈3.4 V), and Ti4+/3+ (≈2.1 V), the optimized material, Na3.2MnTi0.8V0.2(PO4)3, realizes a reversible 3.2-electron redox reaction, enabling a high discharge capacity (172.5 mAh g−1) and an ultrahigh energy density (527.2 Wh kg−1). This work sheds light on the rational construction of NASICON-type cathode materials with multi-electron redox reaction for high-energy SIBs.  相似文献   

19.
Pan Zhou  Dawei He 《中国化学》2016,34(8):795-800
In this study, core‐shell structured Li3V2(PO4)3/C wrapped in graphene nanosheets has been successfully prepared. The reduction of graphene oxide and the synthesis of Li3V2(PO4)3/C are carried out simultaneously using a chemical route followed by a solid‐state reaction. The effects of conducting graphene are studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra and electrochemical measurements. The results reveal that the graphene sheets not only form a compact and uniform coating layer throughout the Li3V2(PO4)3/C, but also stretch out and cross‐link into a conducting network around the Li3V2(PO4)3/C particles. Thus, the graphene decorated Li3V2(PO4)3/C electrode exhibits superior high‐rate capability and long‐cycle stability. It delivers a reversible discharge capacity of 178.2 mAh·g?1 after 60 cycles at a current density of 0.1 C, and the rate performances of 176, 169.3, 156.1 and 135.7 mAh·g?1 at 1, 2, 5 and 10 C, respectively. The superior electrochemical properties make the graphene decorated Li3V2(PO4)3/C composite a promising cathode material for high‐performance lithium‐ion battery.  相似文献   

20.
Preparation and crystal structure of an acidic polyphosphate of calcium is described. CaH2(PO3)4: monoclinic, P21/c, with Z = 2, and a = 5.686(1), b = 9.676(4), c = 8,844(3) Å, β = 92.35(2)°. The crystal structure was solved using 2 321 unique reflections with a final R value of 0.017. The compound is characterized by infinite (PO3)n chains running along c and linked together in a three-dimensional way by Ca? O and hydrogen bonds. The two-dimensional linkage of the phosphoric chains by hydrogen bonds is compared to those already observed in ErH(PO3)4 and BiH(PO3)4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号