首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ISO technical report 14187 provides an introduction to (and examples of) the information that can be obtained about nanostructured materials by using surface analysis tools. In addition, both general issues and challenges associated with characterizing nanostructured materials and the specific opportunities and challenges associated with individual analytical methods are identified. As the size of objects or components of materials approaches a few nanometers, the distinctions among ‘bulk’, ‘surface’, and ‘particle’ analysis blur. This technical report focuses on issues specifically relevant to surface chemical analysis of nanostructured materials. The report considers a variety of analysis methods but focuses on techniques that are in the domain of ISO/TC 201 including Auger electron spectroscopy, X‐ray photoelectron spectroscopy, secondary ion mass spectrometry, and scanning probe microscopy. Measurements of nanoparticle surface properties such as surface potential that are often made in a solution are not discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.  相似文献   

3.
Today, the surface imprinted polymers emerge in various fields as synthetic adsorbents gaining attention in a variety of application areas. In this study, Cu(II) ion surface imprinted poly(2-hydroxyethyl methacrylate-glycidyl methacrylate), poly(HEMA-GMA), cryogels were synthesized via modified two-step polymerization which is different from given in literature and the adsorption of Cu(II) ion from aqueous solution was investigated batch wise. In this respect, the method applied in this study is new in the literature despite heavy metal removal studies reported. The polyethyleneimine (PEI) molecule was used in polymeric structure as a ligand. The poly(HEMA-GMA) cryogels prepared was characterized via Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry (ICP-OES), elemental analysis, scanning electron microscopy (SEM) and the micro-computed tomography (μCT).  相似文献   

4.
A novel plasma functionalization process based on the pulsed plasma polymerization of allyl glycidyl ether is reported for the generation of robust and highly reactive epoxy-functionalized surfaces with well-defined chemical properties. Using a multitechnique approach including X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and ellipsometry, the effect of the plasma deposition parameters on the creation and retention of epoxy surface functionalities was characterized systematically. Under optimal plasma polymerization conditions (duty cycle: 1 ms/20 ms and 1 ms/200 ms), reactive uniform films with a high level of reproducibility were prepared and successfully used to covalently immobilize the model protein lysozyme. Surface derivatization was also carried out with ethanolamine to probe for epoxy groups. The ethanolamine blocked surface resisted nonspecific adsorption of lysozyme. Lysozyme immobilization was also done via microcontact printing. These results show that allyl glycidyl ether plasma polymer layers are an attractive strategy to produce a reactive epoxy functionalized surface on a wide range of substrate materials for biochip and other biotechnology applications.  相似文献   

5.
The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface.  相似文献   

6.
Ambient surface mass spectrometry is an emerging field which shows great promise for the analysis of biomolecules directly from their biological substrate. In this article, we describe ambient ionisation mass spectrometry techniques for the in situ analysis of intact proteins. As a broad approach, the analysis of intact proteins offers unique advantages for the determination of primary sequence variations and posttranslational modifications, as well as interrogation of tertiary and quaternary structure and protein‐protein/ligand interactions. In situ analysis of intact proteins offers the potential to couple these advantages with information relating to their biological environment, for example, their spatial distributions within healthy and diseased tissues. Here, we describe the techniques most commonly applied to in situ protein analysis (liquid extraction surface analysis, continuous flow liquid microjunction surface sampling, nano desorption electrospray ionisation, and desorption electrospray ionisation), their advantages, and limitations and describe their applications to date. We also discuss the incorporation of ion mobility spectrometry techniques (high field asymmetric waveform ion mobility spectrometry and travelling wave ion mobility spectrometry) into ambient workflows. Finally, future directions for the field are discussed.  相似文献   

7.
Secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) represent three surface analysis techniques heavily used in the complementary metal oxide semiconductor (CMOS) industry. The maturity of these techniques is demonstrated by (a) the diversity of lab-based instruments used in research and development (R&D) as well as to support fab-related issues and (b) the fact that highly automated platforms have now been or are being introduced into the fab for process control. Some recent developments of interest in the lab R&D space include the following: (a) the introduction of Orbitrap mass spectrometers into SIMS, (b) the introduction of higher energy monochromated photon sources into standalone lab-based XPS, and (c) the introduction of commercialized vacuum–scanning probe microscopy (SPM) platforms. The possibilities this opens are demonstrated through (a) SIMS analysis of organics from photoresist materials, (b) XPS subsurface analysis, ie, beyond the sputter front during depth profiling, and (c) SPM analysis of 2D material properties sensitive to the ambient environment, to mention a few.  相似文献   

8.
Fundamental and methodological aspects of secondary ion mass spectrometry applied to analysis of elemental/phase composition and structure of the surface layers of fine materials are discussed.  相似文献   

9.
With the transition to ≤28‐nm CMOS technology nodes, the surface analytical challenges with regard to steadily decreasing dimensions and still growing materials options raise the demand of high performing surface analysis techniques. Characterization of ultrathin films and multilayer stacks, especially in high‐k metal gate stacks, by means of low energy ion scattering spectroscopy (LEIS) with its monolayer sensitivity has been established as a very useful analysis technique next to Auger electron spectroscopy, X‐ray photoelectron spectroscopy , and time‐of‐flight secondary ion mass spectrometry. Questions regarding film nucleation, growth, coverage, and diffusion can be answered, thereby enabling those processes to be controlled appropriately. In this work, growth studies of ALD HfO2 and TiN are shown, as well as film thickness determination based on surface spectra. PVD aluminum and lanthanum, acting as work function metals on the gate oxide, were deposited, and their film formation and closure were investigated. Further application fields of LEIS have emerged from the characterization of in‐die features on patterned wafers. As presented on test arrays, it is possible to detect material deep in trenches. This is an advantage if residues need to be identified after etch or clean processes.  相似文献   

10.
Imaging G-SIMS: a novel bismuth-manganese source emitter   总被引:1,自引:0,他引:1  
G-SIMS (gentle-SIMS) is a powerful method that considerably simplifies complex static secondary ion mass spectrometry (SSIMS) analysis of organics at surfaces. G-SIMS uses two primary ion beams that generate high and low fragmentation conditions at the surface. This allows an extrapolation to equivalent experimental conditions with very low fragmentation. Consequently, the spectra are less complex, contain more structural information and are simpler to interpret. In general, G-SIMS spectra more closely resemble electron ionisation mass spectra than SSIMS spectra. A barrier for the wider uptake of G-SIMS is the requirement for two ion beams producing suitably different fragmentation conditions and the need for their spatial registration (spatial alignment) at the surface, which is especially important for heterogeneous samples. The most popular source is the liquid metal ion source (LMIS), which is now sold with almost every new time-of-flight (TOF)-SIMS instrument. Here, we have developed a novel bismuth-manganese emitter (the 'G-tip') for the popular LMISs. This simplifies the alignment and gives excellent G-SIMS imaging and spectroscopy without significantly compromising the bismuth cluster ion beam performance.  相似文献   

11.
Etch rates of Kapton H polyimide film in SF6-O2 plasmas (0.25 torr) were studied as a function of the input gas mixture, the excitation frequency (25–450 kHz; 13.56 MHz), and the biasing mode. The treated surface was examined by X ray photoelectron spectroscopy (ESCA), scanning electron microscopy (SEM), and contact angle measurement. The ion and neutral species of the plasma were sampled and analyzed by mass spectrometry. Etch rates are found to depend on the positive ion flux and the degree of dissociation of neutral molecules. Plasma-treated surfaces are always covered with a deposited material (CnHmOxFy) which partially obstructs the etching reaction by a masking effect and causes surface roughness. A proposed kinetic analysis of the etching mechanism is in good agreement with the experimental data.  相似文献   

12.
We demonstrate the potential of using plasma profiling time-of-flight mass spectrometry (PP-TOFMS) to accelerate process developments for phase-change random access memory (PCRAM) applications, which require advanced materials with composition-driven properties. We assess the performances of PP-TOFMS for the chemical depth-profiling of GeSbTe phase change materials, first after deposition steps to investigate the top surface layer and the incorporation of silicon into the amorphous matrix, then after the thermal annealing step to refine in situ capping strategies, and finally in close loop with etching process steps. Comparison of reference-free semiquantitative PP-TOFMS analysis based on ion beam ratio with Rutherford backscattering spectrometry shows remarkable agreement (~10% relative). PP-TOFMS proves to be a fast screening tool, which allows process monitoring and selection of samples that indeed need more complex analysis.  相似文献   

13.
We report a multi‐instrument characterization of the carbon particles in carbon/polymer/nanodiamond core‐shell materials used for high‐performance liquid chromatography. These particles are prepared by the carbonization/pyrolysis of poly(divinylbenzene) (PDVB) microspheres. Scanning electron microscopy showed that the particles (4.9 µm initially) decreased in size after air oxidation (to 4.4 µm) and again after carbonization (down to 3.5 µm) but remained highly spherical. Brunauer–Emmett–Teller measurements showed low surface areas initially (as received: 1.6 m2/g, after air oxidation: 2.6 m2/g) but high values after carbonization (445 m2/g). Fourier transform infrared spectroscopy revealed the changes in the functional groups after air oxidation (C = O and C–O stretches appear), carbonization (carbon‐oxygen containing moieties disappear), and acid treatment (reintroduction of carbon‐oxygen containing moieties). X‐ray photoelectron spectroscopy (XPS) and elemental analysis revealed the surface and bulk oxygen contents before and after treatments. By XPS, the atom percent oxygen for the as received, air oxidized, carbonized, and acid treated particles are 8.7, 16.6, 3.7, and 13.8, respectively, and by elemental analysis, the percent oxygen in the materials is 0.6, 8.1, 0.9, 16.9, respectively. A principal components analysis of time‐of‐flight secondary ion mass spectrometry data identified ions that were enhanced in the different materials, where almost 90% of the variation in the analyzed peak areas was captured by two principle components. X‐ray diffraction and Raman spectroscopy suggested that the carbonized PDVB was disordered. Thermogravimetric analysis showed significant differences between the differently treated PDVB microspheres. This work applies directly to a commercial product and the process for preparing it. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The important role that surface chemical analysis methods can and should play in the characterization of nanoparticles is described. The types of information that can be obtained from analysis of nanoparticles using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary-ion mass spectrometry (TOF-SIMS), low-energy ion scattering (LEIS), and scanning-probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), are briefly summarized. Examples describing the characterization of engineered nanoparticles are provided. Specific analysis considerations and issues associated with using surface-analysis methods for the characterization of nanoparticles are discussed and summarized, with the impact that shape instability, environmentally induced changes, deliberate and accidental coating, etc., have on nanoparticle properties.   相似文献   

15.
Sodhi RN 《The Analyst》2004,129(6):483-487
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has emerged as one of the most important and versatile surface analytical techniques available for advanced materials research. This arises from its excellent mass resolution, sensitivity and high spatial resolution providing both chemical and distributional (laterally and depth) information for a wide variety of materials and applications. Understanding the various modes of operation and the information that each provides is crucial to the analyst in order to optimise the type of data that is obtained. New developments in primary ion sources and the application of multivariate analysis techniques, which can only extend the versatility and applicability of the technique, are also discussed.  相似文献   

16.
We report the use of fluorescence spectroscopy to investigate the amount of material removed from a PTFE surface and detected during desorption electrospray ionization (DESI) mass spectrometry measurements. The fluorescence intensity before and after DESI analysis of rhodamine 6G is used to determine the amount of material removed from the surface per mass spectrum. Calculations indicate low attomole amounts are removed per linear ion trap mass spectrum.  相似文献   

17.
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g−1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.  相似文献   

18.
Plasma-deposited PEG-like films are emerging as promising materials for preventing protein and bacterial attachment to surfaces. To date, there has not been a detailed surface analysis to examine the chemistry and molecular structure of these films as a function of both precursor size and structure. In this paper, we describe radio-frequency plasma deposition of a series of short-chain oligoglymes, dioxane, and crown ethers onto glass cover slips to create poly(ethylene glycol)-like coatings. The resultant films were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), dynamic contact angle goniometry, and radiolabeled fibrinogen adsorption. Detailed analysis of the high-mass (120-300 m/z) TOF-SIMS oligoglyme film spectra revealed six classes of significant fragments. Two new models are proposed to describe how these fragments could be formed by distinct film-building processes: incorporation of intact and fragmented precursor molecules. The models also provide for the incorporation of hydrocarbon--a species that is not present in the precursors but is evidenced in XPS C(1s) spectra of these films. Two additional models describe the effects of incorporating intact and fragmented cyclic precursors.  相似文献   

19.
This paper reviews a range of instrumental microanalytical techniques for their potential in following the development of nanotechnology. Needs for development in secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), Auger emission spectrometry (AES) laser mass spectrometry, X-ray photon spectroscopy are discussed as well as synchrotron-based methods for analysis. Objectives for development in all these areas for the coming 5 years are defined. Developments of instrumentation in three European synchrotron installations are given as examples of ongoing development in this field.  相似文献   

20.
The feasibility of static secondary ion mass spectrometry (S-SIMS) for the detection of molecule specific information from complex materials, such as natural clay and soil samples, has been investigated. Ion trap (IT), as well as triple quadrupole (TQ) instruments, have been used for mass analysis. Secondary ion images have been acquired using time-of-flight (TOF) S-SIMS. The generation of molecular adduct ions from thin and thick layers on the mineral substrates has been investigated using KBr as a simple model system. Results show that molecular adducts of KBr can be indeed detected from the spiked materials. However, the concentrations of the spiking solutions have to be significantly larger than expected from the surface area measured by gas adsorption techniques. In addition imaging analysis has evidenced that the detection of adduct ions in the mass spectra directly relates to the presence of local micro-crystallites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号