首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
聂春发  索继栓 《中国化学》2005,23(3):315-320
Chiral Ru-BsDPEN, (1R,2R)-N-p-benzenesulfonyl-1,2-diphenylethylenediamine, catalyst has been immobilized on a mesoporous molecular sieve of MCM-41 type successfully. A hybrid mesoporous molecular sieve was synthesized using a precursor bearing benzene group, which in organosilica were sulfonylated and reacted with (1R,2R)-l,2-diphenylethylenediamine and [RuC1E(p-cymene)]2 successively to afford immobilized catalyst. The Brunauer-Emmett-Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size decreased after immobilization of catalyst onto the mesoporous material. Enantioselective transfer hydrogenation of ketones catalyzed by immobilized catalyst showed the highest yield of 22.36% and e.e. value of 31.47% by using acetophenone as substrate when reaction time was 48 and 16 h respectively.  相似文献   

2.
An enhanced active and selective catalyst consisting of ruthenium supported on dealuminated HY zeolite has been prepared by a wet impregnation method. It was found that BET surface area of Ru/HY catalysts significantly increases after HCl treatment. This treatment also increases the concentration of strong acid sites in the catalyst. The hydrogenolysis of glycerol over 5 wt% Ru/HY catalyst was investigated at 190-220 ℃, an initial H2pressure of 3-6 MPa, and in 20 wt% glycerol aqueous solution. The results indicate that HCl treated Ru/HY catalyst shows higher activity compared with the untreated Ru/HY catalyst, and that the glycerol hydrogenolysis efficiency is influenced by the porosity and acidity of the support. A selectivity to 1,2-PDO of 81.3% at a glycerol conversion of 60.1% under 3 MPa H2pressure and 220 ℃ for 10 h was achieved over the modified Ru/HY catalyst with a 1.0 mol/L HCl treatment. It has also been shown that a longer reaction time, a higher temperature and a higher H2pressure have the positive effects on the glycerol hydrogenolysis efficiency of the enhanced Ru/HY.  相似文献   

3.
Ruthenium supported on rare earth oxides(REO)and the mixture ofrare earth oxides(MREO)was studied as heterogeneous catalyst in the 1-heptene hydroformylation under 5.0 MPa synthesis gas(CO/H_2)at 150℃ for20h.Of the rare earth oxides studied,most are better than Al_2O_3and CeO_2 isthe most efficient support.With MREO as support,the ruthenium content,solvents and pretreating condition were studied in 1-heptene hydroformylation.The results show that the best loading of ruthenium is 4% and non-polarcompounds such as cyclohexane,toluene are better solvents.Ru/MREO(3%)catalyst precarbonylated under 5.0 MPa synthesis gas(CO/H_2=1)at 150℃for 10h has high selectivity to aldehyde and low conversion of 1-heptene.TheFT-IR spectra of catalysts before and after reaction prove that rutheniumcarbonyls on the support surface are formed during the hydroformylation andthe precarbonylation processes,which are catalytic active,unstable anddecomposed during the reaction.  相似文献   

4.
The influence factors and paths of methane formation during methanol to hydrocarbons (MTH) reaction were studied experimentally and thermodynamically. The fixed-bed reaction results show that the formation of methane was favored by not only high temperature, but also high feed velocity, low pressure, as well as weak acid sites dominated on deactivated catalyst. The thermodynamic analysis results indicate that methane would be formed via the decomposition reactions of methanol and DME, and the hydrogenolysis reactions of methanol and DME. The decomposition reactions are thermal chemistry processes and easily occurred at high temperature. However, they are influenced by catalyst and reaction conditions through DME intermediate. By contrast, the hydrogenolysis reactions belong to catalytic processes. Parallel experiments suggest that, in real MTH reactions, the hydrogenolysis reactions should be mainly enabled by surface active H atom which might come from hydrogen transfer reactions such as aromatization. But H2 will be involved if the catalyst has active components like NiO.  相似文献   

5.
Chiral Mn Ⅲ (salen) (Jacobsen’s catalyst) was axially immobilized onto a new type of organic polymer-inorganic hybrid materialzirconium poly(styrene-isopropenyl phosphonate)-phosphate(ZPS-IPPA) with different linkage lengths and evaluated as catalysts for the epoxidation of unfunctionalized olefins. The results demonstrated that the prepared catalysts exhibited moderate to good activity and enantioselectivity in the asymmetric epoxidation of unfunctionalized olefins. Furthermore, the immobilized catalysts were relatively stable and could be conveniently separated from the reaction system by simple precipitation in hexane. Moreover, higher enantioselectivity was obtained with catalyst 2c than that of homogeneous counterpart catalyzed even after eight times. The excellent recycling of the catalyst was attributed to its structure feature of ZPS-IPPA which is different from either pure polystyrene or pure zirconium phosphates.  相似文献   

6.
碳化镍钼催化剂的制备及其甲烷干气重整活性(英文)   总被引:1,自引:0,他引:1  
Nickel molybdenum carbide catalysts were prepared and their activities in the CO2 reforming of methane at a low CO2/CH4 reactant ratio were investigated using a microreactor at atmospheric pressure and at 973 K.The effect of the catalyst preparation method and the Ni/Mo ratio on the increase in catalyst life and the promotion of catalytic activity were investigated using N2 adsorption,X-ray diffraction, temperature-programmed carburization,temperature-programmed reaction,and a reforming reaction.The 25Ni75Mo catalyst that was carburized at 813 K exhibited the highest hydrogen formation ability and gave the least carbon deposition.The incomplete carburization of the Mo oxide species in the catalyst that was carburized at a lower temperature gradually gave a more active carburized species.The NiMoOxCy in the catalyst was more active in hydrogen formation during the dry reforming of methane whileβ-Mo2C andη-Mo3C2 were less active.  相似文献   

7.
Inexpensive γ-alumina-based nickel-copper bimetallic catalysts were studied for the hydrogenolysis of levulinic acid,a key platform molecule for biomass conversion to biofuels and other valued chemicals,into γ-valerolactone as a first step towards the production of 2-methyltetrahydrofurane.The activities of both monometallic and bimetallic catalysts were tested.Their textural and chemical characteristics were determined by nitrogen physisorption,elemental analysis,temperature-programmed ammonia desorption,and temperature-programmed reduction.The monometallic nickel catalyst showed high activity but the highest bγ-product production and significant amounts of carbon deposited on the catalyst surface.The copper monometallic catalyst showed the lowest activity but the lowest carbon deposition.The incorporation of the two metals generated a bimetallic catalyst that displayed a similar activity to that of the Ni monometallic catalyst and significantly low bγ-product and carbon contents,indicating the occurrence of important synergetic effects.The influence of the preparation method was also examined by studying impregnated- and sol-gel-derived bimetallic catalysts.A strong dependency on the preparation procedure and calcination temperature was observed.The highest activity per metal atom was achieved using the sol-gel-derived catalyst that was calcined at 450 ℃.High reaction rates were achieved;the total levulinic acid conversion was obtained in less than 2 h of reaction time,yielding up to 96%γ-valerolactone,at operating temperature and pressure of 250 ℃ and 6.5 MPa hydrogen,respectively.  相似文献   

8.
The effects of catalyst preparation and reaction conditions on thecatalytic activity and selectivity for hydrogenation of carbon dioxide to alcoholsover zeolite supported bimetal catalyst were studied.The results showed that:(1)ethanol easily formed on the zeolite with larger pores and methanol did onthat with smaller pores;(2)when pH value of the ion exchange solution was10,the activity reached the maximum;(3)the optimum Cu/Ru mole ratio was3;(4)the influence of reation conditions such as temperature,pressure andH_2/CO_2 mole ratio on the topic reaction was greater.  相似文献   

9.
The surface species of CO hydrogenation on CeO2-Co/SiO2 catalyst were investigated using the techniques of temperature programmed reaction and transient response method. The results indicated that the formation of H2O and CO2 was the competitive reaction for the surface oxygen species, CH4 was produced via the hydrogenation of carbon species step by step, and C2 products were formed by the polymerization of surface-active carbon species (-CH2-). Hydrogen assisted the dissociation of CO. The hydrogenation of surface carbon species was the rate-limiting step in the hydrogenation of CO over CeO2-Co/SiO2 catalyst. The investigation of total pressure, gas hourly space velocity (GHSV), and product distribution using nitrogen-rich synthesis gas as feedstock over a laboratory scale fixed-bed reactor indicated that total pressure and GHSV had a significant effect on the catalytic performance of CeO2-Co/SiO2 catalyst. The removal of heat and control of the reaction temperature were extremely critical steps, which required lower GHSV and appropriate CO conversion to avoid the deactivation of the catalyst. The feedstock of nitrogen-rich synthesis gas was favorable to increase the conversion of CO, but there was a shift of product distribution toward the light hydrocarbon. The nitrogen-rich synthesis gas was feasible for F-T synthesis for the utilization of remote natural gas.  相似文献   

10.
The present work explores the reaction pathways of γ-valerolactone(GVL) over a supported ruthenium catalyst. The conversion of GVL in aqueous phase over a 5% Ru/C catalyst was investigated in a batch reactor operating at 463 K under 500–1000 psi of H_2. The main reaction products obtained under these conditions were 2-butanol(2-BuOH), 1,4-pentanediol(1,4-PDO), 2-methyltetrahydrofuran(2-MTHF) and 2-pentanol(2-PeOH). A complete reaction network was developed, identifying the primary and/or secondary products. In this reaction network, production of 2-BuOH via decarbonylation of a ring-opened surface intermediate CH_3CH(O*)–(CH_2)_2–CO*is clearly the dominant pathway. From the evolution of products as a function of reaction time and theoretical(DFT) calculations, a mechanism for the formation of intermediates and products is proposed. The high sensitivity of 2-BuOH production to the presence of CO, compared to a much lower effect on the production of the other products indicates that the sites responsible for decarbonylation are particularly prone to CO adsorption and poisoning. Also, since the decarbonylation rate is not affected by the H2 pressure it is concluded that the direct decarbonylation path of the CH_3CH(O*)–(CH_2)_2–CO*intermediate does not required a previous dehydrogenation step, as is the case in decarbonylation of short alcohols.  相似文献   

11.
Methanation of carbon dioxide (CO2) is attractive within the context of a renewable energy refinery. Herein, we report an indirect methanation method that harnesses amino alcohols as relay molecules in combination with a catalyst comprising ruthenium nanoparticles (NPs) immobilized on a Lewis acidic and robust metal–organic framework (MOF). The Ru NPs are well dispersed on the surface of the MOF crystals and have a narrow size distribution. The catalyst efficiently transforms amino alcohols to oxazolidinones (upon reaction with CO2) and then to methane (upon reaction with hydrogen), simultaneously regenerating the amino alcohol relay molecule. This protocol provides a sustainable, indirect way for CO2 methanation as the process can be repeated multiple times.  相似文献   

12.
考察了不同配体对原位合成的固载Ru基催化剂上CO2加氢合成HCOOH反应活性的影响, 对于以单齿三苯基类ZPh3分子为配体的催化剂, 活性大小顺序为: PPh3>AsPh3>NPh3. 以PPh3为配体时, 其相应的原位合成催化剂上HCOOH的TOF值为656 h-1. 其次, 双齿膦配体的使用能带来比单齿膦配体更高的活性. 以dppe [1,2-双(二苯基膦基)乙烷]为配体时, 其相应的原位合成催化剂上HCOOH的TOF值为1190 h-1. 量子化学的理论计算结果表明, 具有适中的σ给予性和π接受性, 较小的空间位阻, 较好的电子离域作用的PPh3配体性能优于其它单齿三苯基类配体. 而具有较好的电子离域作用, 并且有螯合作用的双齿膦配体性能优于单齿膦配体.  相似文献   

13.
A new carbene ruthenium complex, 1,3-bis(2,6-dimethylphenyl)-4,5-dihydroimidazol-2-ylidene)(PPh3)Cl2-Ru=CHPh, was synthesized and used as catalyst for the metathesis of 1-hexene. The resulting complex exhibited very high catalytic activity whose TOF is up to 6680 h^-1. However, at the same time significant olefin isomerization was observed and could be surpressed by changing reaction conditions, such as temperature, time, alkene/Ru molar ratio and solvent.  相似文献   

14.
The kinetics of selective CO oxidation (or individual CO or H2 oxidation) over ruthenium catalysts are considerably as affected by the heat released by the reaction and specifics of the interaction of ruthenium with feed oxygen. In a reactor with reduced heat removal (a quartz reactor) under loads of ∼701 gCat−1 h−1 and reagent percentages of ∼1 vol % CO, ∼1 vol % O2, ∼60 vol % H2, and N2 to the balance, the reaction can be carried out in the catalyst surface ignition regime. When catalyst temperatures are below ∼200°C, feed oxygen deactivates metallic ruthenium, the degree of deactivation being a function of temperature and treatment time. Accordingly, depending on the parameters of the experiment and the properties of the ruthenium catalyst, various scenarios of the behavior of the catalyst in selective CO oxidation are realized, including both steady and transition states: in a non-isothermal regime, a slow deactivation of the catalyst accompanied by a travel of the reaction zone through the catalyst bed along the reagent flow; activation of the catalyst; or the oscillation regime. The results of this study demonstrate that, for a strongly exothermic reaction (selective CO oxidation, or CO, or H2 oxidation) occurring inside the catalyst bed, the specifics of the entrance of the reaction into the surface ignition regime and the effects of feed components on the catalyst activity should be taken into account.  相似文献   

15.
Ruthenium acts as a good catalyst for the racemization reaction of secondary alcohols and amines. Ruthenium-catalyzed racemization is coupled with enzymatic kinetic resolution to prepare chiral compounds in 100% theoretical yield. Ten ruthenium complexes (110) act as a good catalyst the for racemization reaction and are also compatible with DKR process. Two other ruthenium complexes [RuCl2(PPh3)3] and [Cp*RuCl(COD)] are active for racemization reaction but their successful compatibility with DKR has not yet been reported. Ru/γ-Al2O3 and Ru–HAP are the heterogeneous catalysts used for the racemization reaction. They have also not been employed for DKR process. Polymer supported ruthenium is employed as a reusable racemization catalyst for aerobic DKR of alcohols.  相似文献   

16.
《Analytical letters》2012,45(9):1799-1805
ABSTRACT

A simple spectrophotometric method for the determination of ruthenium in the presence of platinum in Pt-Ru-Ge catalyst applied in fuel cells has been developed. Platinum catalyst (20% Pt) with carbon support containing 0.5% Ru and 5% Ge was digested in the mixture of HCl+HNO3 (6+1). Carbon was separated from the examined sample by filtration after dissolution of the metals. Ruthenium was converted into a complex with thiourea (λmax=640 nm, ε = 2.9·103 1 mol?1 cm?1) in the medium of 5 M in HCl and 1% in thiourea after 15 min heating at 70 °C. Platinum does not interfere with the determination of ruthenium. Germanium is converted into volatile GeCl4 and escapes from the examined sample during the digestion step. The content of ruthenium determined in the examined samples of catalyst amounted to 0.49% (RSD = 0.14%).  相似文献   

17.
Developing efficient powder catalysts for hydrogen evolution reaction (HER) in the acidic electrolyte is significant for hydrogen generation in the proton exchange membrane (PEM) water electrolysis technique. Herein, we demonstrated an efficient catalyst for HER in the acid media based on the graphene supported ruthenium telluride nanoparticles (RuTe2/Gr). The catalysts were easily fabricated by a facile microwave irradiation/thermal annealing approach, and orthorhombic RuTe2 crystals were found anchored over the graphene surface. The defective structure was demonstrated in the aberration‐corrected transmission electron microscopy images for RuTe2 crystals and graphene support. This catalyst required an overpotential of 72 mV to drive 10 mA cm?2 for HER when loading on the inert glass carbon electrode; Excellent catalytic stability in acidic media was also observed to offer 10 mA cm?2 for 10 hours. The Volmer‐Tafel mechanism was indicated on RuTe2/Gr catalyst by Tafel slope of 33 mV dec?1, similar to that of Pt/C catalysts. The high catalytic performance of RuTe2/Gr could be attributed to its high dispersion on the graphene surface, high electrical conductivity and low charge transfer resistance. This powder catalyst has potential application in the PEM water electrolysis technique because of its low cost and high stability.  相似文献   

18.
A new ruthenium 2,6-diacetylpyridine complex was synthesized and applied in the atom-economic synthesis of enol esters through Markovnikov-directed addition of carboxylic acids to terminal alkynes. The ruthenium complex [RuCl(dap)(PPh3)2]+BArF? was synthesized from [RuCl2(PPh3)2] and the corresponding ligand 2,6-diacetylpyridine (dap). The complex was characterized structurally. The new ruthenium complex was utilized under ambient conditions as a catalyst in the Markovnikov addition of carboxylic acids to terminal alkynes to afford the corresponding enol esters in 93% to 52% isolated yields (85?°C, 16?h reaction time, 1?mol% catalyst loading).  相似文献   

19.
With use of the support prepared by the reaction1 of a Grignard reagent with reaction mixture of AlCl3 and CH3Si(OC2H5)3, an immobilized active stereospecific titanium catalyst was prepared by the three-step treatment of the support, first with TiCl4, second with ethylbenzoate, and third with TiCl4 again. The catalyst was also prepared by the two-step treatment of the support, with the mixture of TiCl4 and ethylbenzoate, and with TiCl4. Solids obtained in each step of the catalyst preparation were characterized by elemental and IR analysis, and their activities for propylene polymerization were determined with triethylaluminum as a cocatalyst under an atmospheric propylene pressure for 1 h at 60°C. The experimental data support the idea that both TiCl4 and ethylbenzoate as donors are immobilized on the surface of the active stereospecific catalyst without any interaction between them.  相似文献   

20.
The hydrogenation of ethyl acetate to ethanol catalyzed by SNS pincer ruthenium complexes was computationally investigated by using DFT. Different from a previously proposed mechanism with fac‐[(SNS)Ru(PPh3)(H)2] ( 5′ ) as the catalyst, an unexpected direct hydride transfer mechanism with a mer‐SNS ruthenium complex as the catalyst, and two cascade catalytic cycles for hydrogenations of ethyl acetate to aldehyde and aldehyde to ethanol, is proposed base on our calculations. The new mechanism features ethanol‐assisted proton transfer for H2 cleavage, direct hydride transfer from ruthenium to the carbonyl carbon, and C?OEt bond cleavage. Calculation results indicate that the rate‐determining step in the whole catalytic reaction is the transfer of a hydride from ruthenium to the carbonyl carbon of ethyl acetate, with a total free energy barrier of only 26.9 kcal mol?1, which is consistent with experimental observations and significantly lower than the relative free energy of an intermediate in a previously postulated mechanism with 5′ as the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号