首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The He1 photoelectron (PE) spectra of both 2(5H) furanone and itstrans-chair-dimeric-compound (t-c-DFN) are reported. The assignment of the PES bands is made on the basis of band shapes, the PES results of the molecules which have the similar atomic groups, and the restricted Hartree-Fock (RHF) calculations for the molecules studied. From the results of both PES experimental and theoretical calculations, it is proved that the ionization potential (IPS) of the HOMO for the dimeric-compound is lower than that of the HOMO for the monomer. And the total energy computed for thet-c-DFN is the lowest in the four possible configurations of dimeric-compounds of 2(5H) furanone. Therefore the synthesis oft-c-DFN is also the easiest. Project supported by the National Natural Science Foundation of China.  相似文献   

2.
3.
李益民  李海洋  孙巧  王殿勋 《化学学报》2003,61(9):1492-1495
给出了两个重要的大气污染化合物PAN和PPN的紫外光电子能谱(PES)。为了 指认PES谱,对两个分子实施了HF和OVGF方法的理论计算,并给出了它们各自的优 化几何构型、PES谱低电离能区的两个分离(PAN)为11.42 eV和12.07 eV;PPN为 11.08 eV和11.79 eV)被归于分子中主要体现“NO_2”基团贡献的最高占有分子轨 道(HOMO)和次最高占有分子轨道(SHOMO)电子电离作用结果。而PPN的第一电离 能11.08 eV低于PAN的11.42 eV,是由于PPN分子中增加的“CH_2”基团电子的给予 作用,这为PPN应具有较大的生物毒性提供合理的解释。  相似文献   

4.
Six-dimensional quantum dynamical calculations are reported for the dissociative chemisorption of (v=0, 1, j=0) H(2) on Cu(100), and for rovibrationally inelastic scattering of (v=1, j=1) H(2) from Cu(100). The dynamics results were obtained using a new potential-energy surface (PES5), which was based on density-functional calculations using a slab representation of the adsorbate-substrate system and a generalized gradient approximation to the exchange-correlation energy. A very accurate method (the corrugation reducing procedure) was used to represent the density-functional theory data in a global potential-energy surface. With the new, more accurately fitted PES5, the agreement between the dynamics results and experimental results for reaction and rovibrationally elastic scattering is not as good as was obtained with a previous potential-energy surface (PES4), which was based on a subset of the density-functional theory data not yet including the results for the low-symmetry Cu sites. Preliminary density-functional theory results suggest that the agreement between theory and experiment will improve over that obtained with PES5 if the density-functional calculations are repeated using a larger basis set and using more copper layers than employed in PES4 and PES5.  相似文献   

5.
Using photodetachment photoelectron spectroscopy (PES) in the gas phase, we investigated the electronic structure and chemical bonding of six anionic [Mo(V)O](3+) complexes, [MoOX(4)](-) (where X = Cl (1), SPh (2), and SPh-p-Cl (3)), [MoO(edt)(2)](-) (4), [MoO(bdt)(2)](-) (5), and [MoO(bdtCl(2))(2)](-) (6) (where edt = ethane-1,2-dithiolate, bdt = benzene-1,2-dithiolate, and bdtCl(2) = 3,6-dichlorobenzene-1,2-dithiolate). The gas-phase PES data revealed a wealth of new electronic structure information about the [Mo(V)O](3+) complexes. The energy separations between the highest occupied molecular orbital (HOMO) and HOMO-1 were observed to be dependent on the O-Mo-S-C(alpha) dihedral angles and ligand types, being relatively large for the monodentate ligands, 1.32 eV for Cl and 0.78 eV for SPh and SPhCl, compared to those of the bidentate dithiolate complexes, 0.47 eV for edt and 0.44 eV for bdt and bdtCl(2). The threshold PES feature in all six species is shown to have the same origin and is due to detaching the single unpaired electron in the HOMO, mainly of Mo 4d character. This result is consistent with previous theoretical calculations and is verified by comparison with the PES spectra of two d(0) complexes, [VO(bdt)(2)](-) and [VO(bdtCl(2))(2)](-). The observed PES features are interpreted on the basis of theoretical calculations and previous spectroscopic studies in the condensed phase.  相似文献   

6.
Reactions of laser-ablated Y and La atoms with H2O2 gives the M(OH)2 and M(OH)3 molecules and the HOMO dehydration product, and the cation M(OH)2+ in solid argon. Density functional calculations show that the dihydroxide molecules and cations are bent at the metal center, and the symmetric and antisymmetric O-H stretching modes are both observed in the infrared spectra. The trihydroxide molecules have calculated C(3h) structures characterized by strong antisymmetric O-H and M-O stretching modes. Mulliken charges increase for all product molecules going down the Group 3 family and increase as one, two, and three OH ligands are bonded to the metal center. Evidence is also presented for the Y(OH)4- anion.  相似文献   

7.
HeI photoelectron spectra of w-heterocycle a-cyano polyenic ethyl ester compounds (1-6) have been given in this paper. Assignment of the spectra is also done with the aid of HeI photoelectron spectroscopic (PES) results of smaller molecules which have similar atomic group to the molecules studied, and the aid of MNDO molecules orbital calculations. The lowest PES experimental ionization potentials (IPs in eV) of different molecules reduce gradually with the increasing number of ethylenic group. The -CO2C2H5 group can be only considered as a substituent.  相似文献   

8.
We perform six-dimensional (6D) quantum wavepacket calculations for H2 dissociatively adsorbing on Cu(100) from a variety of rovibrational initial states. The calculations are performed on a new potential energy surface (PES), the construction of which is also detailed. Reaction probabilities are in good agreement with experimental findings. Using a new flux analysis method, we calculate the reaction probability density as a function of surface site and collision energy, for a variety of initial states. This approach is used to study the effects of rotation and vibration on reaction at specific surface sites. The results are explained in terms of characteristics of the PES and intrinsically dynamic effects. An important observation is that, even at low collision energies, reaction does not necessarily proceed predominantly in the region of the minimum potential barrier, but can occur almost exclusively at a site with a higher barrier. This suggests that experimental control of initial conditions could be used to selectively induce reaction at particular surface sites. Our predictions for site-reactivity could be tested using contemporary experimental methods: The calculations predict that, for reacting molecules, there will be a dependence of the quadrupole alignment of j on the incident vibrational state, v. This is a direct result of PES topography in the vicinity of the preferred reaction sites of v = 0 and v = 1 molecules. Invoking detailed balance, evidence for this difference in preferred reaction site of v = 0 and 1 molecules could be obtained through associative desorption experiments.  相似文献   

9.
We present density functional theory calculations for atomic hydrogen interacting with a stepped surface, the Pt(211) surface. The calculations have been performed at the generalized gradient approximation level, using a slab representation of the surface. This is the state-of-the-art method for calculating the interaction of atoms or molecules with metal surfaces, nevertheless only few studies have used it to study atoms or molecules interacting with stepped surfaces, and none, to the best of our knowledge, have considered hydrogen interacting with stepped platinum surfaces. Our goal has been to initiate a systematic study of this topic. We have calculated the full three-dimensional potential energy surface (PES) for the H/Pt(211) system together with the vibrational band structure and vibrational eigenfunctions of H. A deep global minimum of the PES is found for bridge-bonded hydrogen on the step edge, in agreement with experimental results for the similar H/Pt(533) system. All the local vibrational excitations at the global minimum have been identified, and this will serve as a helpful guide to the interpretation of future experiments on this (or similar) system(s). Furthermore, from the calculated PES and vibrational band structure, we identify a number of consequences for the interpretation or modelling of diffusion experiments studying the coverage and directional dependence of atomic hydrogen diffusion on stepped platinum surfaces.  相似文献   

10.
We present a theoretical study of the reactions of hydrogen atoms with methane and ethane molecules and isotopomers. High-accuracy electronic-structure calculations have been carried out to characterize representative regions of the potential-energy surface (PES) of various reaction pathways, including H abstraction and H exchange. These ab initio calculations have been subsequently employed to derive an improved set of parameters for the modified symmetrically-orthogonalized intermediate neglect of differential overlap (MSINDO) semiempirical Hamiltonian, which are specific to the H+alkane family of reactions. The specific-reaction-parameter (SRP) Hamiltonian has then been used to perform a quasiclassical-trajectory study of both the H+CH4 and H+C2H6 reactions. The calculated values of dynamics properties of the H+CH4-->H2+CH3 reaction and isotopologues, including alkyl product speed distributions, diatomic product internal-state distributions, and cross sections, are generally in good agreement with experiment and with the results provided by the ZBB3 PES [Z. Xie et al., J. Chem. Phys. 125, 133120 (2006)]. The results of trajectories propagated with the SRP Hamiltonian for the H+C2H6-->H2+C2H5 reaction also agree with experiment. The level of agreement between the results calculated with the SRP Hamiltonian and experiment in both the H+methane and H+ethane reactions indicates that semiempirical Hamiltonians can be improved for not only a specific reaction but also a family of reactions.  相似文献   

11.
Hel photoelectron spectra of ω-heterocycle α-cyano polyenic ethyl ester compounds (1–6) have been given in this paper. Assignment of the spectra is also done with the aid of HeI photoelectron spectroscopic (PES) results of smaller molecules which have similar atomic group to the molecules studied, and the aid of MNDO molecules orbital calculations. The lowest PES experimental ionization potentials (IPs in eV) of different molecules reduce gradually with the increasing number of ethylenic group. The -CO2C2H5 group can be only considered as a substituent.  相似文献   

12.
The reactions between lead vapored by laser ablation and different aromatic molecules (C6H6, C5H5N, C4H4O, or C4H5N) seeded in argon carrier gas were studied by a reflectron time-of-flight mass spectrometer (RTOF-MS) with a photoelectron spectrometer. The adiabatic electron affinities (EAs) of the dominant anionic products PbmC6H5(-), Pb(m)C5H4N(-) (m = 1-4) and Pb(m)C4H3 (-), Pb(m)C4H4N(-) (m = 1-3) dehydrogenated complexes are obtained from the photoelectron spectra with 308 and 193 nm photon, respectively. It is found that the EAs of Pb(m)C4H4N are higher than those of Pb(m)C6H5, Pb(m)C5H4N, and Pb(m)C4H3O with the same metal number m. The possible structures for Pb(m)C4H4N(-) complexes were calculated with density functional theory (DFT) and the most stable structure was confirmed. The adiabatic detachment energies for the most stable structure were in agreement with the experimental PES results. The calculated density of state (DOS) agrees with the experimental PES spectrum well. It was confirmed by the theoretical calculations that the C4H4N group bonds on lead clusters through the Pb-N sigma bond.  相似文献   

13.
The important intermediate phenyl-coinage metal complexes (Ag(m)C6H5(-), Au(m)C6H5(-)), which are produced from the reactions between coinage metal clusters formed by laser ablation and the benzene molecules seeded in argon carrier gas, are studied by PES (photoelectron spectroscopy) and DFT (density functional theory). The EAs (adiabatic electron affinities) of these complexes are obtained from PES at both 308 and 193 nm photon energies and show odd-even alternation. Calculations with DFT are carried out on the structural and electronic properties of Ag(m)C6H5(-) and Au(m)C6H5(-); the adiabatic detachment energy and the calculated DOS (density of states) for the ground state of a given anion are in good agreement with the experimental PES results. The observed spectra are also compared with those of the pure coinage metal clusters, which reveal that there are some similarities between them and the phenyl acts like an additional metal atom in the clusters. Furthermore, the bonding between phenyl and metal is analyzed, suggesting that phenyl group binds perpendicularly on metal clusters through C-M sigma bond.  相似文献   

14.
The striking differences observed in the electron-induced (EI) mass fragmentation pathways of two isomeric benzodipyrans are attributable to hydrogen bonding in these molecules. In the "angular" isomer, 6-butyryl-5-hydroxy-2,2,8,8-tetramethyl-3,4,9,10-tetra-hydro-2H,8H-benzo[1,2-b:3,4-b(1)]dipyran (2), H-bonding occurs between the aromatic OH group and the alpha carbonyl moiety contained in the ortho-phenone group, whereas in the"linear" isomer, 10-butyryl-5-hydroxy-2,2,8,8-tetramethyl-3,4,6,7-tetrahydro-2H,8H-benzo-[1,2-b:5,4-b(1)]dipyran (3), the aromatic OH group is para to the phenone moiety, effectively precluding any H-bonding. Semi-empirical molecular orbital calculations (AM1) were used to compare predicted sites of ionization with associated fragmentation patterns. In both molecules, the highest occupied molecular orbital (HOMO) was located predominantly on the aromatic moiety. Similarly, in the radical cation species of both compounds, maximum spin density was located over the aromatic rings. Neither the HOMO nor the spin density maps provided a rational explanation for the differences in fragmentation patterns of the two benzodipyran isomers. The H-bonding favors EI alpha aromatic ring C-O bond cleavage in the"angular" benzodipyran and in 5,7-dihydroxy-2,2-dimethyl-8-butyryl chroman (1), a related monochroman also containing a hydrogen proximal to the aromatic ring C-O bond. In contrast,fragmentation of the "linear" benzodipyran followed a different route, which was exhibited by its base peak resulting from the loss of a propyl group from the butyryl side-chain.  相似文献   

15.
BrCl紫外光电子能谱实验及理论研究   总被引:3,自引:0,他引:3  
采用紫外光电子能谱研究了影响大气臭氧浓度的重要卤素互化物一氯化溴的精细电离能谱.实验得到BrCl的第一绝热电离能和垂直电离能分别为10.95eV和11.00eV.BrCl的最高占据轨道6π电离产生了明显的旋轨分裂谱带.这对旋轨分裂谱带分别清晰地显示出4个振动精细结构峰.频率分析显示BrCl分子最高占据轨道为弱反键性质.比较了HF方法和外壳层格林函数方法(OVGF)对电离能的计算结果,并对实验值进行了分析比较及指认.采用实验构型OVGF方法给出的电离能结果无论在低电离能区还是在高电离能区都和实验值一致,特别是第一垂直电离能10.988eV与实验值11.00eV非常好地吻合.  相似文献   

16.
We report a new full-dimensional potential energy surface (PES) for the water dimer, based on fitting energies at roughly 30,000 configurations obtained with the coupled-cluster single and double, and perturbative treatment of triple excitations method using an augmented, correlation consistent, polarized triple zeta basis set. A global dipole moment surface based on Moller-Plesset perturbation theory results at these configurations is also reported. The PES is used in rigorous quantum calculations of intermolecular vibrational frequencies, tunneling splittings, and rotational constants for (H2O)2 and (D2O)2, using the rigid monomer approximation. Agreement with experiment is excellent and is at the highest level reported to date. The validity of this approximation is examined by comparing tunneling barriers within that model with those from fully relaxed calculations.  相似文献   

17.
We present quasiclassical dynamics calculations of H2 and D2 scattering by the NiAl(110) surface using a recently proposed six-dimensional potential-energy surface (PES) obtained from density-functional theory calculations. The results for dissociative adsorption confirm several experimental predictions using (rotationally hot) D2 beams, namely, the existence of a dissociation barrier, the small isotopic effect, the importance of vibrational enhancement, and the existence of normal energy scaling. The latter conclusion shows that normal energy scaling is not necessarily associated with weak corrugated surfaces. The results for rotationally elastic and inelastic diffractions are also in reasonable agreement with experiment, but they show that many more diffractive transitions are responsible for the observed structures than previously assumed. This points to the validity of the PES recently proposed [P. Riviere, H. F. Busnengo, and F. Martin, J. Chem. Phys. 121, 751 (2004)] to describe dissociative adsorption as well as rotationally elastic and inelastic diffractions in the H2NiAl(110) system.  相似文献   

18.
The phenyl-lead metal complexes ([Pb(m)C6H5]-) produced from the reactions between benzene and lead clusters formed by laser ablation on a lead solid sample are studied by photoelectron spectroscopy (PES) and density functional theory (DFT). The adiabatic electron affinities (EAs) of [Pb(m)C6H5]- are obtained from PES at 308 nm, and the differences between the PES of [Pb(m)C6H5]- and the PES of Pbm- are discussed in detail. The results reveal that the phenyl group binds perpendicularly on lead clusters through the Pb-C sigma bond and the complexes have a closed shell structure. Calculations with DFT are carried out on the structural and electronic properties of [Pb(m)C6H5]-, and the adiabatic detachment energy for the optimized structures of anion are in agreement with the experimental PES results. The density of states (DOS) calculated is compared with experimental PES and is discussed. The most possible structures for each species are concluded, and the bonding between Pb and phenyl is analyzed, which also proves that the phenyl group binds perpendicularly on lead clusters through the Pb-C sigma bond.  相似文献   

19.
Potential energy surfaces (PES) for the ground and excited state intramolecular proton transfer (ESIPT) processes in 5-hydroxy-flavone (5HF) were studied using DFT-B3LYP/6-31G(d) and TD-DFT/6-31G(d) level of theory, respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer (GSIPT) in 5HF. Excited states PES calculations support the existence of ESIPT process in 5HF. ESIPT in 5HF has been explained in terms of HOMO, LUMO electron density of the enol and keto tautomer of 5HF. PES scan by phenyl group rotation suggests that the twisted form, i.e., phenyl group rotated by 18.7° out of benzo-γ-pyrone ring plane is the most stable conformer of 5HF.  相似文献   

20.
The diamino-dithiolato N2S2 ligand N,N'-bis-2-methyl-mercaptopropyl-N,N'-dimethylethylenediamine, H2bmmp-dmed), and its nickel (1) and zinc (2) complexes have been prepared and their reactivities with hydrogen peroxide investigated. Complex 1 yields a mixture of sulfenato (RSO-), 4, sulfinato (RSO2-), 3, and sulfonato (RSO3-), 5, products upon addition of H2O2. Products are separable by column chromatography. Stoichiometric addition of H2O2 to 2 yields an inseparable mixture. Excess peroxide addition results in oxygenation of the ligand to the disulfonate, 6, and decomplexation of zinc. Complexes 1, 2, and 3 and compound 6 have been investigated by X-ray crystallography, and their structures are reported. Density functional theory (DFT) calculations of 1 and 2 reveal significant sulfur p character in the HOMO of each complex. However, 1 also shows significant metal d character that is pi-antibonding with respect to the sulfur p orbitals. Complex 2 shows little metal character in the HOMO. Implications of the HOMO with respect to S-centered reactivity and metal ligand distances in S-oxygenated products are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号