首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The products of UV photolysis of ternary Ar?CH4(CD4)?F2 mixtures (1:c:c 0,c, c 0=0.001–0.01) at 13–16 K were identified by ESR and FTIR spectroscopy. These products are?CH3 (?CD3) radicals of typesI andII and molecular CH3F?HF complexes. The latter were characterized by the IR bands of the stretching C?F (1003 cm?1) and H?F (3774 cm?1) vibrations. The ESR spectra of radicalsI are asymmetric. The anisotropy of theg-factor (Δg~10?3) of radicalI indicates that the structure of the radicals is nonplanar. The ESR spectrum of the typeII radical is identical to that of matrix-isolated?CH3 (?CD3) radicals with the planar structure (Δg<5·10?5). Under the experimental conditions, the amount of complexes formed in the photolysis is equal to 0.022·c. When the photolysis is ceased, radicalI disappears after ≈103 s and radicalII is stabilized. The limiting concentrations of the stabilized?CH3 and?CD3 radicals are equal to 2·10?2·c and 2·10?3·c, respectively. A mechanism of the formation of the products is suggested. It is based on the assumption that both matrix-isolated CH4 and F2 and their heterodimers CH4?F2 are present in the samples and it takes into account the long-range migration of translationally excited flourine atoms. The CH3F?HF complexes and radicalsI are generated by the photolysis of the CH4?F2 heterodimers. The decay of radicalsI is caused by geminate recombination of proximate F...CH3 pairs. RadicalsII are formed in the reaction of translationally excited fluorine atoms with isolated CH4 (CD4) molecules.  相似文献   

2.
Polarograms for the reduction of glycinate complexes of palladium(II) (5 × 10?5 M) are obtained in equilibrium solutions of pH 0.8–3.0 with different protonated-glycine concentrations c Hgly (supporting electrolyte, 0.5 M NaClO4). It is established that the irreversible wave of reduction of complexes Pd(gly)2 corresponds to the diffusion limiting current I d (2) . A similar wave at pH 1.5 and c Hgly = 0.005 M, as well as at pH 1.0 and c Hgly = 0.05–0.5 M is preceded by the diffusion limiting current I d (1) . Values of the I d (2) /I d (1) ratio are close to the ratio between equilibrium concentrations of Pd(gly)2] and [Pdgly+], calculated using the step stability constant for Pd(gly)2. This fact testifies to the reduction of complexes Pdgly+ in the vicinity of I d (1) and complexes Pd(gly)2, in the vicinity of I d (2) . At pH 0.8–1.2 and [H2gly+] = 1 × 10?4 to 5 × 10?3 there is observed the diffusion-kinetic limiting current of the first wave I 1 (1) , which increases with increasing [H+] and decreasing [H2gly+]. The nature of the slow preceding chemical stage that occurs during the reduction of complexes Pdgly+ is discussed.  相似文献   

3.
Peak potentials and the kinetics of hydroquinone oxidation at an electrode from a graphite-epoxy composite in activated and passivated states were studied in supporting electrolytes of different buffer capacities and pH varying from 0.1 to 8.8, using methods of direct-current and cyclic voltammetry. The electrode was activated before its polarization by mechanically cutting a 0.2–4-μm surface layer directly in a test solution. The electrode was passivated by storing in air for two or more days. The behavior of hydroquinone in its oxidation at the passivated and activated electrodes was compared using diagnostic criteria for the following functions: I a?v 1/2, logI a?logv, I a/v 1/2?v 1/2, and I a/c, where v is the rate of the potential sweep and c is the volumetric concentration of hydroquinone. The potential difference of anodic and cathodic peaks in cyclic voltammograms indicated the reversibility of the electrode reaction in all supporting electrolytes.  相似文献   

4.
The electrochemical behavior of iodine in an ambient temperature molten salt system, aluminum chloride-N-(1-butyl)pyridinium chloride (BuPyCl), have been studied in basic (excess BuPyCl) and neutral (1.0:1.0 AlCl3: BuPyCI mole ratio) melt compositions. Acid-base interactions of iodine in different oxidation states with the ionic solvent are observed. High stability of triiodide ion in neutral butylpyridinium tetrachloroaluminate indicates relatively weak intermolecular interactions in this solvent. In basic solutions polyhalogen equilibria involving iodine in different oxidation states and chloride ions are established. In iodine and tetraethylammonium triiodide solutions a mixture of ICI2?, I2Cl?, I3? and I? ions forms. The formation constants of I2Cl? and I3? and the equilibrium constant for I2Cl? disproportionation are estimated.  相似文献   

5.
K3[DyIII(nta)2(H2O)]·5H2O and (NH4)3[DyIII(nta)2] have been synthesized in aqueous solution and characterized by IR, elemental analysis and single-crystal X-ray diffraction techniques. In K3[DyIII(nta)2(H2O)]·5H2O the DyIII ion is nine coordinated yielding a tricapped trigonal prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 15.373(5) Å, b = 12.896(4) Å, c = 26.202(9) Å; β = 96.122(5)°, V = 5165(3) Å3, Z = 8, D c = 1.965 g·cm?3, μ = 3.458 mm?1, F(000) = 3016, R 1 = 0.0452 and wR 2 = 0.1025 for 4550 observed reflections with I ≥ 2σ(I). In (NH4)3[DyIII(nta)2] the DyIII ion is eight coordinated yielding a usual dicapped trigonal anti-prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 13.736(3) Å, b = 7.9389(16) Å, c = 18.781(4) Å; β = 104.099(3)°, V = 1986.3(7) Å3, Z = 2, D c = 1.983 g·cm?3, μ = 3.834 mm?1, F(000) = 1172, R 1 = 0.0208 and wR 2 = 0.0500 for 2022 observed reflections with I ≥ 2σ(I). The results indicate that the difference in counter ion also influences coordination numbers and structures of rare earth metal complexes with aminopolycarboxylic acid ligands.  相似文献   

6.
The electrochemical behavior of iodine and iodide has been studied in AlCl3+NaCl mixtures with compositions ranging from NaCl saturated melts to AlCl3+NaCl (63+37 mol %) at platinum and tungsten electrodes. Iodide is oxidized in two steps to iodine and I(I); a reduction wave to iodide and an oxidation wave to I(I) are obtained in iodine solutions. The equilibrium constant for the reaction, I?+I(I)=I2, is 6×108 l mol?1 in molten chloroaluminate melts at 175°C.  相似文献   

7.
Two title complexes, [TbIII(Eg3a)(H2O)2] · 4.5H2O (I) (H3Eg3a = 3-carboxymethyl-6, 9-dioxa-3,12-diazatetradecanedioic acid) and K[TbIII(Edta)(H2O)3] · 5H2O(II) (H4Edta = ethylenediamine-N,N,N′,N′-tetraaceti acid), were prepared and characterized by FT-IR, elemental analyses, TGA-DTA-DTG, and single-crystal X-ray diffraction technique. For I, the Tb3+ ion is nine-coordinated by an Eg3a ligand and two coordination water molecules, yielding a monocapped square-antiprismatic (MCSAP) conformation. Complex I crystallizes in the monoclinic system with P21/c space group. The crystal data are as follows: a = 9.237(3), b = 10.018(3), c = 23.580(7) Å, β = 99.021(5)°, V = 2155.2(11) Å3, Z = 4, ρ = 1.822 Mg m?3, μ = 3.353 mm?1, F(000) = 1180, R 1 = 0.0445 and wR 2 = 0.1034 for 4262 observed reflections with I ≥ 2σ(I). For II, the Tb3+ ion is nine-coordinated by an Edta ligand and three coordinate water molecules also yielding a MCSAP conformation. Complex II crystallizes in the orthorhombic system with Fdd2 space group. The crystal data are as follows: a = 19.373(5), b = 35.429(10), c = 12.114(3) Å, V = 8315(4) Å3, Z = 16, ρ = 2.014 Mg m?3, μ = 2.014 mm?1, F(000) = 5024, R 1 = 0.0224 and wR 2 = 0.0557 for 3189 observed reflections with I ≥ 2σ(I). The potassium cations bridge the coordination spheres yielding many infinite long 1-D zigzag-type chains. The molecular structure of I is more stable than that of II. According to thermal analyses, the collapsing temperatures of crystal structure are 314°C for I and 348°C for II, which indicates that the crystal structure of II is more stable.  相似文献   

8.
Crystal structure parameters were determined for the delafossite type compound CuAlO2 at 295, 450, 600, 750, 900, and 1200 K with single crystal high temperature X-ray diffraction technique. Anisotropic refinements result in conventional R values of 0.021, 0.027, 0.029, 0.030, 0.032, and 0.036 at respective temperatures. Crystals of CuAlO2 have the rhombohedral space group R3m with a = 2.8584(7), c = 16.958(3) Å and Z = 3 at 295 K. The mean thermal expansion coefficient for the dimension a is 11.0 × 10?6 K?1 about three times larger than 4.1 × 10?6 K?1 for c. In the structure, the AlO6 octahedra are linked by their OO edges and form AlO2 layers perpendicular to the c axis with the thickness corresponding to the height of an octahedron. With increasing temperature, the AlO6 octahedra expand along the directions of the basal plane, while expansion scarcely occurs along the c axis. The Cu atom lying between the AlO2 layers shows a large anisotropic behavior in the thermal vibration. The temperature factor for Cu atom in the basal plane becomes very large (0.044 Å2) at 1200 K, but the ratio of the temperature factor perpendicular to c to that parallel to c does not change appreciably with increasing temperature.  相似文献   

9.
A new complex Cu(H2L2)(H2O)2] (I), where H4L2 is 1,5-bis[2-(dihydroxyphosphinyl)phenoxy]-3-oxapentane, has been synthesized and characterized. Its molecular and crystal structure has been determined by X-ray crystallography and vibrational spectroscopy. In mononuclear complex I, the copper(II) cation is in a distorted square-planar environment of two water oxygen atoms and two oxygen atoms of the chelating dianion (H2L2)2?. The crystals are orthorhombic, space group Cmc21, a = 25.909(5) ?, b = 9.1500(18) ?, c = 8.5600(17) ?, V = 2029.3(7) ?3, Z = 4, ??calc = 1.688 g cm?3, ?? = 1.292 cm?1; 3107 measured reflections, 1174 reflections with I > 2.0??(I), R int = 0.0600, GOOF = 1.413, R 1 (I > 2??(I)) = 0.0812, wR 2 (I > 2??(I)) = 0.2145.  相似文献   

10.
Two compounds, 7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane bis(tribromide) and bis(bromodiiodide) — [H2(Crypt-222)]2+·2Br 3 ? (I) and [H2(Crypt-222)]2+·1.45(BrI2)?·0.4(Br2I)?·0.15 I 3 ? (II) — are prepared and characterized by single crystal XRD; the refinement of the second compound was more accurate. Isomorphous monoclinic structures (I, space group C2/c, Z = 4, a = 12.090, b = 15.833 Å, c = 15.732 Å, β = 95.83°; II, a = 12.548 Å, b = 16.417 Å, c = 15.748 Å, β = 94.53°) are solved by a direct method and refined in the anisotropic full-matrix approximation to R = 0.057 (I) and 0.044 (II) using all 2635 (I) and 2852 (II) measured independent reflections (automated CAD-4 diffractometer, λMoK α). In the structures of I and II one of the trihalide anions sits at the inversion center i(000), and the second trihalide anion and the dication [H2(Crypt-222)]2+ are situated at crystallographic axis 2. In the structure of II iodine is located in the center of trihalide anions, while the terminal atoms are disordered and are represented by a statistical combination of iodine and bromine atoms.  相似文献   

11.
A new supramolecule [Co(H2PIDC)2(H2O)2] · 3H2O (I) (H2PIDC? is singly deprotonated 2-propylimidazole-4,5-dicarboxylate) has been synthesized and characterized by the X-ray diffraction method. Compound I crystallizes in the tetragonal space group I41/acd with the cell parameters a = 22.1665(14), c = 18.538(2) Å, M r = 543.35, V = 9108.7(14) Å3, ρ c = 1.585 g/cm3, Z = 16, F(000) = 4528. The Co2+ ion is coordinated by two N-O chelated H2PIDC? ligands and two water oxygen atoms to form a distorted octahedral geometry. The mononuclear complexes are linked by a hydrogen bond into 1D w-shaped double-chain fragments, which are then linked by oxygen-bifurcated acceptor hydrogen bonds into a 3D framework.  相似文献   

12.
The electrochemical Peltier effect was studied at a gold electrode in solutions containing some Fe(II)/Fe(III) redox couples by measuring the local temperature change in the electrode/solution interphase under controlled-potential and controlled-current polarization. Relative values of the electrochemical Peltier coefficient for the cathodic process at equilibrium potential, which is denoted by (Πc)I=0, were determined by analyzing the observed temperature change as a function of current. The values of (Πc)I=0 were found to be positive for the Fe(H2O)62+/Fe(H2O)63+ systems in HClO4 (1 M), HNO3 (1 M), H2SO4 (0.5 M), and HCl (1 M), their magnitudes being very similar in the first three acid solutions, but smaller in the HCl solution. On the other hand, a negative value of (Πc)I=0 was obtained in the case of a Fe(CN)64?/Fe(CN)63? couple in a H2SO4 (0.5 M) solution. Such a difference in the Peltier coefficient is considered to be due to the difference in the ionic species of iron involved in the electrode reaction.  相似文献   

13.
Complex [Eu2(HTBA)6(H2O)6] n (I), where H2TBA is 2-thiobarbituric acid C4H4N2O2S, is synthesized. Its structure is determined by X-ray diffraction analysis (CIF file CCDC 987519). The crystals of complex I are monoclinic: a = 14.1033(4) Å, b = 10.0988(4) Å, c = 15.4061(5) Å, β = 110.003(1)°, V = 2061.9(1) Å3, space group P2/n, Z = 2. All three independent ligands HTBA? are coordinated to Eu3+ through oxygen atoms. Six HTBA? ions (two terminal and four bridging) and two water molecules are coordinated to one of the independent Eu3+ ions. The second Eu3+ ion is bound to four bridging HTBA? ions and four water molecules. The coordination polyhedra are square antiprisms. The bridging HTBA? ions join the antiprisms into layers. The structure is stabilized by numerous hydrogen bonds and the π-π interaction between HTBA?.  相似文献   

14.
Two complexes are synthesized: diaquabromo(18-crown-6)rubidium [RbBr(18-crown-6)(H2O)2] (I) and triaqua(18-crown-6)barium dibromide monohydrate [Ba(18-crown-6)(H2O)3]2+ 2Br? · H2O (II). The orthorhombic structure of compound I (space group Pnma, a = 10.124 Å, b = 15.205 Å, c = 12.544 Å, Z = 4) and the monoclinic structure of compound II (space group C 2/c, a = 17.910 Å, b = 10.315 Å, c = 14.879 Å, β = 123.23°, Z = 4) are determined by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.063 (I) and 0.042 (II) for all 2293 (I) and 3363 (II) independent measured reflections (CAD-4 automated diffractometer, λMoK α). The complex molecule [RbBr(18-crown-6)(H2O)2] in compound I and the randomly disordered cation [Ba(18-crown-6)(H2O)3]2+ in compound II are of the host-guest type: their Rb+ or Ba2+ cation (its coordination number is nine) is located in the cavity of the 18-crown-6 ligand and coordinated by all six O atoms. In structure I, the coordination polyhedron of Rb+ is a distorted hexagonal pyramid with a triple apex at the Br? ligand and two O atoms of the water molecules. In structure II, the Ba2+ polyhedron is a distorted hexagonal bipyramid with one apex at the O atom of the water molecule and the other split apex at two O atoms of water molecules.  相似文献   

15.
A simple adsorptive cathodic stripping voltammetry method has been developed for antimony (III and V) speciation using 4‐(2‐thiazolylazo) – resorcinol (TAR). The methodology involves controlled preconcentration at pH 5, during which antimony(III) – TAR complex is adsorbed onto a hanging mercury drop electrode followed by measuring the cathodic peak current (Ip,c) at ?0.39 V versus Ag/AgCl electrode. The plot of Ip,c versus antimony(III) concentration was linear in the range 1.35×10?9–9.53×10?8 mol L?1.The LOD and LOQ for Sb(III) were found 4.06×10?10 and 1.35×10?9 mol L?1, respectively. Antimony(V) species after reduction to antimony(III) with Na2SO3 were also determined. Analysis of antimony in environment water samples was applied satisfactorily.  相似文献   

16.
The synthesis and physico-chemical characterization of Fe(II) and Mn(II) complexes of 4,6-di-tert-butyl-3[(2-hydroxyethyl)sulphanyl]-1,2-dihydroxybenzene (HLI) and 2-amino-4,6-di-tert-butylphenol (HLII) were carried out. Antibacterial activity of the Co(II), Fe(II) and Mn(II) complexes was evaluated in comparison with Cu(II) complexes and three common antibiotics; it was found to follow the order: (1) Сu(LI)2 > Сo(LI)2 > Fe(LI)2 ? Mn(LI)2 > HLI; (2) Сu(LII)2 > Сo(LII)2 > HLII > Fe(LII)2 ? Mn(LII)2; and their reducing ability (determined electrochemically) followed the same order. Spectrophotometric investigation was carried out in order to estimate the rate of the reduction of bovine heart сytochrome c with the ligands and their metal(II) complexes. NADPH:cytochrome P450-reductase was found to increase the rate of сytochrome c reduction with HLI and HLII ligands, while adrenodoxin in couple with NAD(P)H: adrenodoxin reductase had no substantial effect thereon. It was shown that the reduction of сytochrome c with these compounds cannot be related solely to the facility of their oxidation оr ionization.  相似文献   

17.
A new complex [Dy2(Pht)2(HPht)2(Phen)2(H2O)4] (I), where Pht2? = dianion of o-phthalic acid; HPht? = mono-anion of o-phthalic acid; Phen = 1,10-phenanthroline, has been synthesized and the crystal structure was determined by X-ray crystallography. The I crystallizes in the triclinic system, space group $P\bar 1$ with lattice parameters a =10.1126(3) Å, b =10.7029(3) Å, c = 11.9360(3) Å, α = 90.2260(10)°, β = 99.5340(10)°, γ = 100.9810(10)°, V = 1249.87(6) Å3, Z = 2, ρcalcd = 1.881 mg m?3. The photophysical property of I has been studied with excitation and emission spectra.  相似文献   

18.
A Co(II) complex [Co3(L)4(H2O)6] · 2Cl (I), where L is salicylaldehyde-aminoacetic acid Schiff base, was synthesized and characterized via elemental analysis, UV, and single crystal X-ray crystallography. Complex I crystallizes in the orthorhombic system, space group Pbcn with lattice parameters a = 9.569(4), b = 12.301(5), c = 36.931(14) Å, V = 4347(3) Å3, Z = 4, ρcalcd = 1.608 mg m?3. At the same time, the binding reaction between complex I and bovine serum albumin (BSA) was studied by fluorescence spectroscopy combined with UV-Vis absorption measurements under simulative physiological conditions. The results indicated that its combination reaction is mainly a static quenching process. Complex I bound BSA with a molar ratio of 1: 1 and the binding constant K A values are 3.86 × 105 L mol?1 (25°C) and 1.17 × 105 L mol?1 (36°C). The shortest binding distance r between the donor BSA and acceptor (complex I) is 2.49 nm, which affirms that complex I has partly inserted into the hydrophobic pocket of BSA.  相似文献   

19.
A new Cu(II) coordination polymer with singly deprotonated 2-propyl-imidazole-4,5-dicarboxylate (H3PIDC) as bridging ligand of formula [Cu(H2PIDC)2] n (I) was synthesized and characterized by IR, element analysis, and X-ray diffraction method. Compound I crystallizes in the monoclinic space group P21/n with cell parameters a = 8.332(1), b = 10.160(1), c = 11.228(1) Å, β = 91.13(1)°, V = 950.3(2) Å3, M r = 457.88, Z = 2, ρ c = 1.600 g/cm3, F(000) = 470, μ = 1.202 mm?1, R 1 = 0.0412, and wR 2 = 0.1064 for 2015 observed reflections. The Cu2+ ions are coordinated by four H2PIDC? ligands via N,O-chelating and O-bridging mode to form 2D layer planes, which are further linked by intermolecular hydrogen bonds and weak interactions into a 3D framework.  相似文献   

20.
Concentration formation constants for the 18-crown-6-sodium ion complex in anhydrous methanol solutions were measured as a function of the ionic strength of the solution. The Kc values remained reasonably constant for Ic ? 0.05 mol dm?3 At higher ionic strengths the Kc values begin to decrease. The infinite-dilution formation constant was 2.2 × 104.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号