首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Electrophoresis》2018,39(17):2246-2252
Upconversion nanoparticles (UCNPs) are an emerging class of optical materials with high potential in bioimaging due to practically no background signal and high penetration depth. Their excellent optical properties and easy surface functionalization make them perfect for conjugation with targeting ligands. In this work, capillary electrophoretic (CE) method with laser‐induced fluorescence detection was used to investigate the behavior of carboxyl‐silica‐coated UCNPs. Folic acid, targeting folate receptor overexpressed by wide variety of cancer cells, was used for illustrative purposes and assessed by CE under optimized conditions. Peptide‐mediated bioconjugation of antibodies to UCNPs was also investigated. Despite the numerous advantages of CE, this is the first time that CE was employed for characterization of UCNPs and their bioconjugates. The separation conditions were optimized including the background electrolyte concentration and pH. The optimized electrolyte was 20 mM borate buffer with pH 8.  相似文献   

2.
DNA sequencing and genotyping in miniaturized electrophoresis systems   总被引:4,自引:0,他引:4  
Kan CW  Fredlake CP  Doherty EA  Barron AE 《Electrophoresis》2004,25(21-22):3564-3588
Advances in microchannel electrophoretic separation systems for DNA analyses have had important impacts on biological and biomedical sciences, as exemplified by the successes of the Human Genome Project (HGP). As we enter a new era in genomic science, further technological innovations promise to provide other far-reaching benefits, many of which will require continual increases in sequencing and genotyping efficiency and throughput, as well as major decreases in the cost per analysis. Since the high-resolution size- and/or conformation-based electrophoretic separation of DNA is the most critical step in many genetic analyses, continual advances in the development of materials and methods for microchannel electrophoretic separations will be needed to meet the massive demand for high-quality, low-cost genomic data. In particular, the development (and commercialization) of miniaturized genotyping platforms is needed to support and enable the future breakthroughs of biomedical science. In this review, we briefly discuss the major sequencing and genotyping techniques in which high-throughput and high-resolution electrophoretic separations of DNA play a significant role. We review recent advances in the development of technology for capillary electrophoresis (CE), including capillary array electrophoresis (CAE) systems. Most of these CE/CAE innovations are equally applicable to implementation on microfabricated electrophoresis chips. Major effort is devoted to discussing various key elements needed for the development of integrated and practical microfluidic sequencing and genotyping platforms, including chip substrate selection, microchannel design and fabrication, microchannel surface modification, sample preparation, analyte detection, DNA sieving matrices, and device integration. Finally, we identify some of the remaining challenges, and some of the possible routes to further advances in high-throughput DNA sequencing and genotyping technologies.  相似文献   

3.
The dissociation constants of 10 sulfonated azo dyes, six of the most common food colours used as additives (Food Yellow 4, Food Yellow 3, Food Red 9, Food Red 7, Food Red 17 and Food Blue 5), and four commonly used as textile dyes (Acid Orange 7, Acid Orange 12, Acid Red 26 and Acid Red 88), have been determined by two different systems, one by using capillary electrophoresis (CE) with diode array detection and the other by using UV-visible absorption spectrophotometry, which has been used as reference method to obtain the pKa values. The pKa values obtained by CE were determined in two ways, first on the basis of the electrophoretic mobilities (calculated from the migration times), and after we propose a new methodology, in which the dissociation constants are determined from the spectra corresponding to the maxima of electrophoretic peaks. The pKa values obtained by using these CE methods have been compared with those obtained by using the spectrophotometric method. The results show that the pKa values obtained by the CE proposed method are in general closer to the reference values than those obtained from the electrophoretic mobilities. Moreover, the proposed method retains the advantages of CE, as the possibility of working with small amounts of sample, despite its purity.  相似文献   

4.
Pan Q  Hong S  Zhu X  Zhao M  Lee LP 《Lab on a chip》2012,12(5):932-938
We report a novel on-line electrophoretic sample clean-up approach for highly sensitive and reproducible microchip electrophoretic (μCE) immunoassay of low-abundance proteins in human serum. The method takes advantage of the differential effect of field-amplified sample stacking on molecules with different electrophoretic mobility. Large interfering proteins are removed from the loading channel by simple voltage control, resulting in selective concentration and injection of smaller target analytes to the separation channel. As a proof of concept, an antibody-free injection mode was developed for direct μCE immunoassay of human insulin-like growth factor-I (IGF-I) in serum samples without any additional purification steps. Clear and sharp peaks were obtained for IGF-I with low background and excellent reproducibility. Besides, the assay sensitivity was further increased by addition of ethanol to the sample buffer at a concentration of 50% right before performing the μCE detection. The lower limit of detection of IGF-I achieved 0.68 ng mL(-1), with an overall signal enhancement factor of 2750. The established on-line electrophoretic sample clean-up approach may find wide applications in the development of other microchip-based high-throughput analytical platforms for clinical and biological use.  相似文献   

5.
A capillary electrophoretic (CE) method was developed that allows the trace determination of formaldehyde in the presence of an excess of dihydroxyacetone (DHA). As formaldehyde is an uncharged molecule with no electrophoretic mobility and a low response in UV detection, the conditions for a direct CE trace determination are not promising. After derivatisation with dansylhydrazine, a charged formaldehyde dansylhydrazone was obtained which has a very good UV response at 214 nm. Owing to the high separation efficiency of CE, it was possible to separate and determine formaldehyde dansylhydrazone in the presence of a 100 000-fold excess of DHA dansythydrzone.  相似文献   

6.
This paper reviews and discusses the analytical combination of ionic liquids (IL) with CE. On the one hand, it shows CE as a powerful technique to separate impurities from IL as well as being capable to determine physical and chemical properties of IL. On the other hand, it also shows how IL are employed in CE separations to enhance resolution, peak efficiency and peak symmetry. Specifically, IL are used as additives in CZE, NACE, and MEKC and as support coatings of the capillary wall in electrochromatography. The integrity of the IL in the electrophoretic system as well as the roles of the cations and anions of the IL in the electrophoretic separation are also discussed.  相似文献   

7.
The capillary electrophoretic (CE) behaviors of ten xanthones in the presence of beta-cyclodextrin (CD) are investigated, and apparent analyte-selector binding constants between beta-CD and the xanthones in the CE running buffer are calculated to elucidate the migration order. Also, the separation selectivity with beta-CD additive is compared with that of sulfated beta-CD additive. It is indicated that beta-CD can greatly change the separation selectivity of xanthones, and the electrophoretic behaviors of xanthones are rather different when using beta-CD from that when using sulfated beta-CD as an additive.  相似文献   

8.
Sonke JE  Salters VJ 《The Analyst》2004,129(8):731-738
A theoretical-experimental approach to evaluate disequilibrium effects in capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) is presented. Electrophoresis requires metal ligand (ML) complexes to be stable on the time scale of separation and detection. By expressing ML complex stability in terms of half-life during a CE separation, an evaluation of separation artifacts can be made. Kinetically slow metals like Cr, Al or Fe form complexes that are stable on the time scale of electrophoretic separations. Kinetically fast metals, like Pb, Hg, Cu, Cd and REE, however tend to form labile complexes which unless complexed by strong chelators will dissociate during CE separations. A reactive transport simulation model of CE separations involving ML complexes allows a more detailed prediction of disequilibrium bias and identifies kinetically limited from mobility-limited types of dissociation. Complementary experimental results are given for kinetic and equilibrium binding experiments of Sm with humic acid. The equilibrium logK for Sm-Leonardite humic acid (HA) binding at pH 7 and 0.01 mol L(-1) ionic strength was determined to be 13.04. Kinetic rates of formation and dissociation for SmHA were 5.9 10(8) and 5.3 10(-5) mol s(-1).  相似文献   

9.
Chankvetadze B 《Journal of chromatography. A》2007,1168(1-2):45-70; discussion 44
This paper provides the author's insight on the past, present and future of performing enantioseparations using capillary electrophoretic (CE) techniques. These techniques are discussed from the historical point of view, as well as based on their potential as the separation techniques of today and the future. The overview covers mechanistic as well as practical aspects of CE techniques.  相似文献   

10.
Quinolones are a family of antibacterial agents that are used extensively in both human and veterinary clinics. Their antibacterial activity is pH-dependent, and therefore an examination of protonation equilibria in quinolone solution is essential. In this work, dissociation constants of quinolones in water were obtained using capillary electrophoresis (CE). The method is based on measuring the electrophoretic mobility of the solute as a function of pH. Mobility and pH data are fitted using different models. These developed equations have two advantages. They permit the determination of pKa of analytes with the advantages of CE and also permit the prediction of the effect of pH on the electrophoretic behaviour of substances and then the prediction of the pH optimum for the separation methods, using the minimum of experimental measurements.  相似文献   

11.
Capillary zone electrophoresis (CZE) has been applied for fractionation and characterization of soil-derived humic acids (HAs). Humic acids from soddy-podzolic (HA(s)) and chernozem (HA(ch)) soils were studied as well as hydrophobic high-molecular-weight (HMW) and hydrophilic low-molecular-weight (LMW) HA(s) fractions obtained by salting-out with ammonium sulfate at a saturation of 0-40% and >70%, respectively. The possibility of CZE partial fractionation of HAs has been demonstrated. The shape of "humic hump" was shown to depend on the pH of running electrolyte. Almost the whole peak overlapping occurred if alkaline solutions were used for fractionation, but the peak resolution was improved at pH 5-7. Under appropriate fractionation conditions (pH 7), at least three humic acid subfractions with different electrophoretic mobilities were distinguished in the electropherograms of initial HA and HA(s) fractions. Such a high peak resolution has never been achieved for humic acids before. The presence of three subfractions in the HA is in agreement with gel-filtration analysis and was confirmed by comparison of the electrophoretic behavior of HA(s) with those of its HMW (hydrophobic) and the LMW (hydrophilic) fractions. The potentiometric titration of HA and its fractions was performed and the pK(a) of the functional groups were calculated. An attempt was made for the first time to relate the variation of electrophoretic mobility values with acid-base properties of humic acids. It was shown that changes in the humate charge resulting from the variation of the ionization degree of its functional groups as a function of pH can be estimated on the basis of electrophoretic mobility values. Potential of CZE in estimation of HA isoelectric point was demonstrated. The pH value corresponding to the lowest absolute electrophoretic mobility value of about 20 x 10(-5) cm(2) V(-1) s(-1) can be used for approximate estimation of HA isoelectric point. The data were discussed and agreement with the random coil structural model has been shown.  相似文献   

12.
Dolník V 《Electrophoresis》2006,27(1):126-141
This review article with 304 references describes recent developments in CE of proteins, and covers the two years since the previous review (Hutterer, K., Dolník, V., Electrophoresis 2003, 24, 3998-4012) through Spring 2005. It covers topics related to CE of proteins, including modeling of the electrophoretic migration of proteins, sample pretreatment, wall coatings, improving separation, various forms of detection, special electrophoretic techniques such as affinity CE, CIEF, and applications of CE to the analysis of proteins in real-world samples including human body fluids, food and agricultural samples, protein pharmaceuticals, and recombinant protein preparations.  相似文献   

13.
Janos P 《Electrophoresis》2003,24(12-13):1982-1992
The separation of lanthanide and actinide elements belongs to one of the most challenging tasks of the separation science, due to a great similarity in their physical and chemical properties. The electrophoretic separation can be accomplished in the presence of suitable complex-forming agents, from which alpha-hydroxyisobutyric acid (HIBA) has been used most often. In the most effective capillary electrophoretic mode--capillary zone electrophoresis (CZE)--a complete separation of lanthanide ions can be accomplished within a few minutes. Various electrophoretic methods can be relatively easily adopted for the determinations of individual lanthanide elements in certain kinds of technical materials, concentrates, precursors, etc., where the high speed and low costs of analysis characteristics of capillary electrophoresis (CE) may be advantageously exploited. Electrophoretic techniques may also be employed for speciation studies, especially for examinations of the behavior of actinides in the environment.  相似文献   

14.
Trenerry VC 《Electrophoresis》2001,22(8):1468-1478
Capillary electrophoretic (CE) methods have been used to separate and determine a wide range of water-soluble vitamins in pharmaceutical preparations, but has found limited application in determining vitamins at naturally occurring levels in food and beverages. CE has been used to determine vitamin C in fruits and beverages, niacin in a range of foods and thiamine in samples of meat and milk. The CE methodologies used to determine vitamins in pharmaceutical preparations and biological fluids are also included as examples of the effectiveness of CE in vitamin analysis.  相似文献   

15.
Capillary electrophoresis (CE) has been proven to be a convenient and useful technique for the determination of the critical micelle concentration (CMC) of a surfactant in an electrophoretic system under operating conditions. In this review, methodological approaches to the determination of the CMC of surfactants by CE technique are described. The practical requirements for making such measurements and the CMC values of surfactants determined by CE methods are presented. In addition, difficulties and uncertainty, as well as misconceptions that may arise in the CMC determination are discussed.  相似文献   

16.
Detailed information on the geochemical behavior of radioactive and toxic metal ions under environmental conditions (in geological matrices and aquifer systems) is needed in order to assess the long-term safety of waste repositories. This includes knowledge of the mechanisms of relevant geochemical reactions, as well as associated thermodynamic and kinetic data. Several previous studies have shown that humic acid can play an important role in the immobilization or mobilization of metal ions due to complexation and colloid formation. In our project we investigate the complexation behavior of (purified Aldrich) humic acid and its influence on the migration of the lanthanides europium and gadolinium (homologs of the actinides americium and curium) in the ternary system consisting of these heavy metals, humic acid and kaolinite (KGa-1b) under almost natural conditions. Capillary electrophoresis (CE, Beckman Coulter P/ACE MDQ), with its excellent separation performance, was hyphenated with a homemade interface to inductively coupled plasma mass spectrometry (ICP–MS, VG Elemental PlasmaQuad 3) giving a system that is highly sensitive to the rare-earth element species of europium and gadolinium with humic acid. The humic acid used was also halogenated with iodine, which acted as an ICP–MS marker. To couple CE to ICP–MS, a fused silica CE capillary was flexibly fitted into a MicroMist 50 μl nebulizer with a Cinnabar cyclonic spray chamber in the external homemade interface. The chamber was chilled to a temperature of 4 °C to optimize the sensitivity. 200 ppb of cesium were added to the CE separation buffer so that the capillary flow could be observed. A make-up fluid including 4 ppb Ho as an internal standard was combined with the flow from the capillary within the interface in order to get a fluid throughput high enough to maintain continuous nebulization. Very low detection limits were achieved: 125 ppt for 153Eu and 250 ppt for 158Gd. Using this optimized CE–ICP–MS coupling system it was possible to quantify metal concentrations from the detection limit up to approximately 1 ppm (the linear range). This set-up was used to separate metal/humic acid-species in a 100 mM acetic acid/10 mM acetate buffer system. Using humic acid as the complexing ligand, uncomplexed metal ion species could be separated from metal–humate complexes on a time-resolved scale.   相似文献   

17.
Capillary electrophoresis of proteins 1999-2001   总被引:2,自引:0,他引:2  
Dolnik V  Hutterer KM 《Electrophoresis》2001,22(19):4163-4178
This review article with 223 references describes recent developments in capillary electrophoresis (CE) of proteins and covers papers published during last two years, from the previous review (V. Dolnik, Electrophoresis 1999, 20, 3106-3115) through Spring 2001. It describes the topics related to CE of proteins including modeling of the electrophoretic properties of proteins, sample pretreatment, wall coatings, improving selectivity, detection, special electrophoretic techniques, and applications.  相似文献   

18.
We report the separate and combined effects of humic acid and Ca2+ ions on the transport of colloidal particles through a sand-packed column. Polystyrene latex particles with a sulfate functional group were used as model colloids. The concentrations of both the inlet solution and the effluent solutions were measured during each experimental run. Breakthrough curves were obtained by taking the ratios of each effluent sample concentration to the inlet solution concentration. In the absence of humic acid, the results indicate that increasing the concentration of Ca2+ increases particle attachment to the sand, thus causing decreased transport rates of latex particles through the porous bed matrix. Once 4 mg/l humic acid was added to the system, changes were observed in the effect that Ca2+ has on latex particle breakthrough. In a system containing calcium, increasing the humic acid concentration was shown to reduce particle attachment and increase transport rates. In the absence of calcium, the ratios for the outlet-to-inlet concentrations were similar for each concentration of humic acid. The electrophoretic mobility was also measured in order to determine the role of electrostatic repulsion in the latex particle transport. The electrophoretic mobility of the latex particles was found to be dependent on humic acid concentration in the absence of Ca2+ but not in its presence. Received: 2 February 2001 Accepted: 6 2001  相似文献   

19.
The analysis of biological samples (e.g., blood, urine, saliva, tissue homogenates) by capillary electrophoresis (CE) requires efficient sample preparation (i.e., concentration and clean-up) procedures to remove interfering solutes (endogenous/exogenous and/or low-/high-molecular-mass), (in)organic salts and particulate matter. The sample preparation modules can be coupled with CE either off-line (manual), at-line (robotic interface), on-line (coupling via a transfer line) or in-line (complete integration between sample preparation and separation system). Sample preparation systems reported in the literature are based on chromatographic, electrophoretic or membrane-based procedures. The combination of automated sample preparation and CE is especially useful if complex samples have to be analyzed and helps to improve both selectivity and sensitivity. In this review, the different modes of solid-phase (micro-) extraction will be discussed and an overview of the potential of chromatographic, electrophoretic (e.g., isotachophoresis, sample stacking) and membrane-based procedures will be given.  相似文献   

20.
Abstract

Size-exclusion chromatographic (SEC) fractionation and electrophoretic separation of aquatic humic matter samples from a Finnish lake using Sephadex G-75 with 7 M urea solution as eluent and 10% polyacrylamide gel (PAGE) with urea and sodium dodecyl sulphate solution (SDS), respectively, were performed and compared to similar analyses performed on a Russian chernozem soil humic acid sample and Nordic reference fulvic and humic acid samples. The integrated whole of aquatic humic solutes and soil humic acids were found to exhibit similar SEC-PAGE behaviours. Humic matter was not excessively disaggregated by the 7 M urea and hence SEC-PAGE can with confidence be applied as a coarse, initial fractionation procedure or for certain predeterminations of the structural composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号